DOE Joint Genome Institute, Walnut Creek, CA, USA.
Department of Microbiology, Institut Pasteur, Paris, France.
Nat Microbiol. 2019 Nov;4(11):1895-1906. doi: 10.1038/s41564-019-0510-x. Epub 2019 Jul 22.
Bacteriophages from the Inoviridae family (inoviruses) are characterized by their unique morphology, genome content and infection cycle. One of the most striking features of inoviruses is their ability to establish a chronic infection whereby the viral genome resides within the cell in either an exclusively episomal state or integrated into the host chromosome and virions are continuously released without killing the host. To date, a relatively small number of inovirus isolates have been extensively studied, either for biotechnological applications, such as phage display, or because of their effect on the toxicity of known bacterial pathogens including Vibrio cholerae and Neisseria meningitidis. Here, we show that the current 56 members of the Inoviridae family represent a minute fraction of a highly diverse group of inoviruses. Using a machine learning approach leveraging a combination of marker gene and genome features, we identified 10,295 inovirus-like sequences from microbial genomes and metagenomes. Collectively, our results call for reclassification of the current Inoviridae family into a viral order including six distinct proposed families associated with nearly all bacterial phyla across virtually every ecosystem. Putative inoviruses were also detected in several archaeal genomes, suggesting that, collectively, members of this supergroup infect hosts across the domains Bacteria and Archaea. Finally, we identified an expansive diversity of inovirus-encoded toxin-antitoxin and gene expression modulation systems, alongside evidence of both synergistic (CRISPR evasion) and antagonistic (superinfection exclusion) interactions with co-infecting viruses, which we experimentally validated in a Pseudomonas model. Capturing this previously obscured component of the global virosphere may spark new avenues for microbial manipulation approaches and innovative biotechnological applications.
噬病毒体科(Inoviridae)的噬菌体以其独特的形态、基因组内容和感染周期为特征。噬病毒体的一个最显著特征是它们能够建立慢性感染,其中病毒基因组以游离体或整合到宿主染色体中的形式存在于细胞内,并且不断释放病毒粒子而不杀死宿主。迄今为止,已经对相对较少数量的噬病毒体进行了广泛研究,这些噬病毒体要么具有生物技术应用价值,如噬菌体展示,要么因为它们对包括霍乱弧菌和脑膜炎奈瑟菌在内的已知细菌病原体的毒性有影响。在这里,我们表明,噬病毒体科的目前 56 个成员代表了高度多样化的噬病毒体群体中的一小部分。我们使用一种机器学习方法,利用标记基因和基因组特征的组合,从微生物基因组和宏基因组中鉴定出 10,295 个噬病毒体样序列。总的来说,我们的结果呼吁将当前的噬病毒体科重新分类为一个病毒目,其中包括六个与几乎所有细菌门相关的不同提议家族,这些家族存在于几乎所有的生态系统中。在几个古菌基因组中也检测到了推定的噬病毒体,这表明这个超级群的成员共同感染了细菌和古菌领域的宿主。最后,我们鉴定出了广泛的噬病毒体编码毒素-抗毒素和基因表达调节系统,以及与共感染病毒协同作用(CRISPR 逃避)和拮抗作用(超感染排斥)的证据,我们在一个假单胞菌模型中对其进行了实验验证。捕获这个以前被掩盖的全球病毒圈的组成部分可能会为微生物操纵方法和创新的生物技术应用开辟新的途径。