Department of Biomedical Science and Center for Bio-Nanomaterials, Daegu University, Gyeongsan, 38453, South Korea.
Research Center for Herbal Convergence on Liver Disease, Daegu Haany University, Gyeongsan, 38578, South Korea.
Extremophiles. 2019 Nov;23(6):649-657. doi: 10.1007/s00792-019-01115-6. Epub 2019 Jul 22.
An ionic interaction that holds an α-helix and a β-strand on which catalytic Asp and His residues are located, respectively, is conserved in a hyperthermophilic esterase EstE1 (optimum temperature 70 °C) and a mesophilic esterase rPPE (optimum temperature 50 °C). We investigated the role of an ionic interaction between E258 and R275 in EstE1 and that between E263 and R280 in rPPE in active-site stability of serine esterases adapted to different temperatures. Ala substitutions caused a 5-10 °C decrease in the optimum temperature of both EstE1 and rPPE mutants. Surprisingly, disruption of the ionic interaction caused larger effects on the conformational flexibility of EstE1 mutants despite their rigid structures, whereas the disruption had fewer effects on the thermal stability of EstE1 mutants at 60-70 °C, as the structure of EstE1 was adapted to high temperatures. In contrast, mesophilic rPPE mutants showed dramatic decreases in thermal stability at 40-50 °C, but less changes in conformational flexibility because of their inherently flexible structures. The results of this study suggest that the ionic interaction between the α-helix with catalytic Asp and the β-strand with catalytic His plays an important role in the active-site conformation of EstE1 and rPPE, with larger effects on the conformational flexibility of hyperthermophilic EstE1 and the thermal stability of mesophilic rPPE.
在一个热稳定性酯酶 EstE1(最适温度 70°C)和一个嗜温酯酶 rPPE(最适温度 50°C)中,分别存在一个将 α-螺旋和 β-折叠结合在一起的离子相互作用,催化天冬氨酸和组氨酸残基分别位于其上。我们研究了 EstE1 中 E258 和 R275 之间以及 rPPE 中 E263 和 R280 之间离子相互作用在适应不同温度的丝氨酸酯酶活性部位稳定性中的作用。Ala 取代导致 EstE1 和 rPPE 突变体的最适温度降低了 5-10°C。令人惊讶的是,尽管 EstE1 突变体的结构刚性,但破坏离子相互作用对其构象灵活性的影响更大,而在 60-70°C 时,破坏离子相互作用对 EstE1 突变体的热稳定性的影响较小,因为 EstE1 的结构适应了高温。相比之下,嗜温 rPPE 突变体在 40-50°C 时表现出热稳定性的显著下降,但由于其固有柔性结构,构象灵活性的变化较小。本研究结果表明,α-螺旋上的催化天冬氨酸和β-折叠上的催化组氨酸之间的离子相互作用对 EstE1 和 rPPE 的活性部位构象起着重要作用,对热稳定性的影响较大嗜温 rPPE。