Xia Hanchun, Li Geng, Cai Haoran, Li Xiaolong, Sun Peiheng, Wang Peijia, Huang Jiajie, Wang Liang, Zhang Desuo, Yang Yefeng, Xiong Jie
Department of Materials Engineering, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018, China.
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
Dalton Trans. 2019 Aug 28;48(32):12168-12176. doi: 10.1039/c9dt02227a. Epub 2019 Jul 23.
The development of flexible energy storage devices for portable and wearable electronics has aroused increasing interest. In this work, three-dimensional hierarchical NiCoO@NiMn-LDH nanowire/nanosheet arrays have been successfully fabricated on carbon cloth through a facile hydrothermal and calcination synthetic method. Benefiting from the sophisticated hybrid nanoarchitectures with desirable structure and components, the optimized NiCoO@NiMn-LDH hybrid electrode is found to deliver a remarkable specific capacity of 278 mA h g at 2 mA cm and a good rate capability of 89.1% retention at 20 mA cm. Detailed analysis of the reaction kinetics for the hybrid electrode clearly indicates the dominant diffusion-controlled contribution to the total capacity. In addition, a flexible solid-state hybrid supercapacitor is assembled by taking NiCoO@NiMn-LDH and activated carbon as the cathode and anode, respectively, which manifests a maximum energy density of 47 W h kg at a power density of 357 W kg as well as an excellent long-term cycling stability (95.6% retention after 5000 cycles over 8 mA cm). Our work demonstrates the great potential of this core/shell hybrid nanostructure as an advanced battery-type electrode for high-performance flexible energy storage devices.
用于便携式和可穿戴电子产品的柔性储能装置的发展引起了越来越多的关注。在这项工作中,通过简便的水热和煅烧合成方法,在碳布上成功制备了三维分级NiCoO@NiMn-LDH纳米线/纳米片阵列。受益于具有理想结构和组分的复杂混合纳米结构,优化后的NiCoO@NiMn-LDH混合电极在2 mA cm时具有278 mA h g的显著比容量,在20 mA cm时具有89.1%的良好倍率性能。对混合电极反应动力学的详细分析清楚地表明,扩散控制对总容量起主要作用。此外,以NiCoO@NiMn-LDH和活性炭分别作为阴极和阳极组装了柔性固态混合超级电容器,其在357 W kg的功率密度下表现出47 W h kg的最大能量密度以及出色的长期循环稳定性(在8 mA cm下5000次循环后保持95.6%)。我们的工作证明了这种核壳混合纳米结构作为高性能柔性储能装置的先进电池型电极具有巨大潜力。