Coelho Rodrigo C V, Araújo Nuno A M, Telo da Gama Margarida M
Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
Soft Matter. 2019 Aug 28;15(34):6819-6829. doi: 10.1039/c9sm00859d.
We use numerical simulations to investigate the hydrodynamic behavior of the interface between nematic (N) and isotropic (I) phases of a confined active liquid crystal. At low activities, a stable interface with constant shape and velocity is observed separating the two phases. For nematics in homeotropic channels, the velocity of the interface at the NI transition increases from zero (i) linearly with the activity for contractile systems and (ii) quadratically for extensile ones. Interestingly, the nematic phase expands for contractile systems while it contracts for extensile ones, as a result of the active forces at the interface. Since both activity and temperature affect the stability of the nematic, for active nematics in the stable regime the temperature can be tuned to observe static interfaces, providing an operational definition for the coexistence of active nematic and isotropic phases. At higher activities, beyond the stable regime, an interfacial instability is observed for extensile nematics. In this regime defects are nucleated at the interface and move away from it. The dynamics of these defects is regular and persists asymptotically for a finite range of activities. We used an improved hybrid model of finite differences and the lattice Boltzmann method with a multi-relaxation-time collision operator, the accuracy of which allowed us to characterize the dynamics of the distinct interfacial regimes.
我们使用数值模拟来研究受限活性液晶的向列相(N)和各向同性相(I)之间界面的流体动力学行为。在低活性下,观察到一个形状和速度恒定的稳定界面将两相分开。对于垂直排列通道中的向列相,在向列 - 各向同性转变处界面的速度从零开始:(i)对于收缩系统,随活性呈线性增加;(ii)对于伸展系统,随活性呈二次方增加。有趣的是,由于界面处的活性力,收缩系统中向列相膨胀,而伸展系统中向列相收缩。由于活性和温度都影响向列相的稳定性,对于处于稳定状态的活性向列相,可以调节温度以观察静态界面,从而为活性向列相和各向同性相的共存提供一个操作定义。在较高活性下,超出稳定状态,对于伸展向列相观察到界面不稳定性。在这种状态下,缺陷在界面处成核并远离界面。这些缺陷的动力学是规则的,并且在有限的活性范围内渐近持续。我们使用了一种改进的有限差分和晶格玻尔兹曼方法的混合模型,该模型具有多弛豫时间碰撞算子,其精度使我们能够表征不同界面状态的动力学。