Choi Eun-Suk, Yang June-Mo, Kim Seul-Gi, Cuhadar Can, Kim So-Yeon, Kim Seong Hun, Lee Donghwa, Park Nam-Gyu
School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea.
Nanoscale. 2019 Aug 1;11(30):14455-14464. doi: 10.1039/c9nr02885d.
We report here resistive switching memory characteristics of imidazolium lead iodide depending on the molar ratio of PbI2 to imidazolium iodide (ImI), that is, PbI2 : ImI = 1 : 0, 1 : 0.5, 1 : 1, 1 : 2, 1 : 3 and 0 : 1. X-ray diffraction confirms that the stoichiometric composition results in a hexagonal structure of (Im)PbI3, showing a one-dimensional face-sharing [PbI3-] chain. Bipolar resistive switching characteristics are observed regardless of the mixing ratio, where the forming process is required prior to SET and RESET processes at around +0.2 V and -0.2 V, respectively. The ON/OFF ratio is increased from 106 to 109 as the ImI content is increased due to the increased HRS associated with the pronounced insulating characteristics by ImI, whereas, the stoichiometric (Im)PbI3 exhibits 5 times longer endurance (103) and an order of magnitude longer retention time (104 s) as compared to other compositions. Multilevel data storage capability is confirmed by changing the compliance current. The low resistance state (LRS) and the high resistance state (HRS) are associated with Ohmic conduction and Schottky conduction, respectively. Density functional theory (DFT) calculation reveals that the defect formation energy of iodine vacancy is estimated to be low indicating that (Im)PbI3 has a sufficient concentration of iodide vacancy for filament formation. Further energy barrier calculations show that iodide migration preferentially occurs along the 1-dimensional [234] crystallographic direction rather than the interlayer [130] direction. A good performance of the (Im)PbI3-based memristor is thus related to the low defect formation energy of iodide vacancy and the preferential growth of the filament along the 1-dimensional chain.
我们在此报告碘化咪唑铅的电阻开关记忆特性,该特性取决于碘化铅(PbI₂)与碘化咪唑(ImI)的摩尔比,即PbI₂∶ImI = 1∶0、1∶0.5、1∶1、1∶2、1∶3和0∶1。X射线衍射证实,化学计量组成导致(Im)PbI₃的六方结构,呈现一维面共享[PbI₃⁻]链。无论混合比例如何,均观察到双极电阻开关特性,其中在分别约+0.2 V和 -0.2 V的SET和RESET过程之前需要形成过程。随着ImI含量的增加,开/关比从10⁶增加到10⁹,这是由于ImI具有明显的绝缘特性,导致高电阻状态(HRS)增加;然而,化学计量比的(Im)PbI₃与其他组成相比,具有5倍更长的耐久性(10³)和一个数量级更长的保持时间(10⁴ s)。通过改变顺从电流证实了多级数据存储能力。低电阻状态(LRS)和高电阻状态(HRS)分别与欧姆传导和肖特基传导相关。密度泛函理论(DFT)计算表明,碘空位的缺陷形成能估计较低,这表明(Im)PbI₃具有足够浓度的碘空位用于细丝形成。进一步的能垒计算表明,碘化物迁移优先沿一维[234]晶体学方向而非层间[(130)]方向发生。因此,基于(Im)PbI₃的忆阻器的良好性能与碘空位的低缺陷形成能以及细丝沿一维链的优先生长有关。