School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/nano Materials & Technology, Yunnan University, 2 Cuihu North Road, Kunming, 650091, P. R. China.
College of Environment, Hohai University, 1 XikangRoad, Nanjing, 210098, P. R. China.
ChemSusChem. 2019 Sep 20;12(18):4285-4292. doi: 10.1002/cssc.201901239. Epub 2019 Aug 23.
Low charge-separation transport efficiency resulting from structural defects largely limits photocatalytic hydrogen production over polymeric graphitic carbon nitride (PCN) photocatalyst. Herein, an electron-donating group, namely p-phenylene, is incorporated into PCN by a polycondensation reaction between carbon nitride and p-phenylenediamine (or p-benzoquinone) to repair the structural defects. The p-phenylene-modified PCN exhibits an almost fivefold increase in H evolution, a threefold increase in photocurrent density, and higher nonradiative rate (0.285 ns ). Spectroscopic studies confirm that p-phenylene tends to bridge the heptazine-based oligomers through a polycondensation reaction. Theoretical calculations reveal that anchoring of the heptazine units by p-phenylene induces localization of h and e on the phenylene and melem moieties, respectively, which effectively separates the charge carriers. This strategy provides an opportunity to overcome structural defects in carbon nitride for efficient photocatalytic solar energy conversion.
由于结构缺陷,电荷分离输运效率低,在聚合石墨相氮化碳(PCN)光催化剂上进行光催化制氢的效率受到很大限制。在此,通过在氮化碳和对苯二胺(或对苯醌)之间的缩聚反应,将供电子基团即亚苯基引入到 PCN 中,以修复结构缺陷。与原始 PCN 相比,p-亚苯基修饰的 PCN 的 H 2 析出量增加了近五倍,光电流密度增加了三倍,非辐射速率(0.285 ns)更高。光谱研究证实,p-亚苯基倾向于通过缩聚反应桥接基于六嗪的低聚物。理论计算表明,通过 p-亚苯基固定六嗪单元会导致 h 和 e 分别定域在亚苯基和 melem 部分上,这有效地分离了载流子。该策略为克服氮化碳中的结构缺陷以实现高效的光催化太阳能转化提供了机会。