Suppr超能文献

TyG-er:一种使用电子健康记录识别与胰岛素抵抗状况相关的临床因素的集成回归森林方法。

TyG-er: An ensemble Regression Forest approach for identification of clinical factors related to insulin resistance condition using Electronic Health Records.

机构信息

Department of Information Engineering (DII), Università Politecnica delle Marche, Ancona, Italy.

Department of Information Engineering (DII), Università Politecnica delle Marche, Ancona, Italy; Cognition, Motion and Neuroscience and Computational Statistics and Machine Learning, Istituto Italiano di Tecnologia, Genova, Italy.

出版信息

Comput Biol Med. 2019 Sep;112:103358. doi: 10.1016/j.compbiomed.2019.103358. Epub 2019 Jul 17.

Abstract

BACKGROUND

Insulin resistance is an early-stage deterioration of Type 2 diabetes. Identification and quantification of insulin resistance requires specific blood tests; however, the triglyceride-glucose (TyG) index can provide a surrogate assessment from routine Electronic Health Record (EHR) data. Since insulin resistance is a multi-factorial condition, to improve its characterisation, this study aims to discover non-trivial clinical factors in EHR data to determine where the insulin-resistance condition is encoded.

METHODS

We proposed a high-interpretable Machine Learning approach (i.e., ensemble Regression Forest combined with data imputation strategies), named TyG-er. We applied three different experimental procedures to test TyG-er reliability on the Italian Federation of General Practitioners dataset, named FIMMG_obs dataset, which is publicly available and reflects the clinical use-case (i.e., not all laboratory exams are prescribed on a regular basis over time).

RESULTS

Results detected non-conventional clinical factors (i.e., uricemia, leukocytes, gamma-glutamyltransferase and protein profile) and provided novel insight into the best combination of clinical factors for detecting early glucose tolerance deterioration. The robustness of these extracted clinical factors was confirmed by the high agreement (from 0.664 to 0.911 of Lin's correlation coefficient (r)) of the TyG-er approach among different experimental procedures. Moreover, the results of the three experimental procedures outlined the predictive power of the TyG-er approach (up to a mean absolute error of 5.68% and r=0.666,p<.05).

CONCLUSIONS

The TyG-er approach is able to carry information about the identification of the TyG index, strictly correlated with the insulin-resistance condition, while extracting the most relevant non-glycemic features from routine data.

摘要

背景

胰岛素抵抗是 2 型糖尿病的早期恶化阶段。胰岛素抵抗的识别和量化需要特定的血液检测;然而,甘油三酯-葡萄糖(TyG)指数可以从常规电子健康记录(EHR)数据中提供替代评估。由于胰岛素抵抗是一种多因素的情况,为了更好地描述其特征,本研究旨在从 EHR 数据中发现非平凡的临床因素,以确定胰岛素抵抗状况的编码位置。

方法

我们提出了一种高可解释的机器学习方法(即集成回归森林与数据插补策略),命名为 TyG-er。我们应用了三种不同的实验程序来测试 TyG-er 在意大利全科医生联合会数据集(FIMMG_obs 数据集)上的可靠性,该数据集是公开的,反映了临床应用案例(即并非所有实验室检查都在一段时间内定期进行)。

结果

结果检测到非传统的临床因素(即尿酸、白细胞、γ-谷氨酰转移酶和蛋白质谱),并为检测早期葡萄糖耐量恶化的最佳临床因素组合提供了新的见解。TyG-er 方法提取的这些临床因素的稳健性通过不同实验程序之间高的一致性(Lin 相关系数(r)从 0.664 到 0.911)得到了证实。此外,三种实验程序的结果概述了 TyG-er 方法的预测能力(最高平均绝对误差为 5.68%,r=0.666,p<.05)。

结论

TyG-er 方法能够携带与胰岛素抵抗状况严格相关的 TyG 指数识别信息,同时从常规数据中提取最相关的非血糖特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验