Zakaria Rozalina, Zainuddin Nur Aina'a Mardhiah, Leong Tan Chee, Rosli Rosnadiya, Rusdi Muhammad Farid, Harun Sulaiman Wadi, Sadegh Amiri Iraj
Photonic Research Centre, Faculty Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
Micromachines (Basel). 2019 Jul 11;10(7):465. doi: 10.3390/mi10070465.
In this paper, we report the effects of a side-polished fiber (SPF) coated with titanium (Ti) films in different thicknesses, namely 5 nm, 13 nm, and 36 nm, protected by a thin layer of transition metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS) and tungsten disulfide (WS), which provide ultra-sensitive sensor-based surface plasmon resonance (SPR) covering from the visible to mid-infrared region. The SPF deposited with Ti exhibits strong evanescent field interaction with the MoS and WS, and good optical absorption, hence resulting in high-sensitivity performance. Incremental increases in the thickness of the Ti layer contribute to the enhancement of the intensity of transmission with redshift and broad spectra. The findings show that the optimum thickness of Ti with 36 nm combined with MoS causes weak redshifts of the longitudinal localized surface plasmon resonance (LSPR) mode, while the same thickness of Ti with WS causes large blueshifts. The redshifts are possibly due to a reduced plasmon-coupling effect with the excitonic region of MoS. The observed blueshifts of the LSPR peak position are possibly due to surface modification between WS and Ti. Changing the relative humidity from 58% to 88% only elicited a response in Ti/MoS. Thus, MoS shows more sensitivity on 36-nm thickness of Ti compared with WS. Therefore, the proposed fiber-optic sensor with integration of 2D materials is capable of measuring humidity in any environment.
在本文中,我们报告了涂覆有不同厚度(即5纳米、13纳米和36纳米)钛(Ti)薄膜的侧面抛光光纤(SPF)的效果,该光纤由一层薄薄的过渡金属二硫属化物(TMDC)如二硫化钼(MoS)和二硫化钨(WS)保护,它们提供了从可见光到中红外区域的基于超灵敏传感器的表面等离子体共振(SPR)。沉积有Ti的SPF与MoS和WS表现出强烈的倏逝场相互作用以及良好的光吸收,从而产生高灵敏度性能。Ti层厚度的增加有助于增强具有红移和宽光谱的透射强度。研究结果表明,36纳米厚的Ti与MoS结合时,纵向局域表面等离子体共振(LSPR)模式的红移较弱,而相同厚度的Ti与WS结合时则会产生大的蓝移。红移可能是由于与MoS的激子区域的等离子体耦合效应降低。观察到的LSPR峰位置的蓝移可能是由于WS和Ti之间的表面改性。将相对湿度从58% 改变到88% 仅在Ti/MoS中引起响应。因此,与WS相比,MoS在36纳米厚的Ti上表现出更高的灵敏度。因此,所提出的集成二维材料的光纤传感器能够在任何环境中测量湿度。