Suppr超能文献

基于深度多层感知器的行星探测漫游车地形分类

Deep Multi-Layer Perception Based Terrain Classification for Planetary Exploration Rovers.

作者信息

Bai Chengchao, Guo Jifeng, Guo Linli, Song Junlin

机构信息

School of Astronautics, Harbin Institute of Technology, Harbin 150000, China.

China Aerospace Science and Technology Corporation, Beijing 100000, China.

出版信息

Sensors (Basel). 2019 Jul 13;19(14):3102. doi: 10.3390/s19143102.

Abstract

Accurate classification and identification of the detected terrain is the basis for the long-distance patrol mission of the planetary rover. But terrain measurement based on vision and radar is subject to conditions such as light changes and dust storms. In this paper, under the premise of not increasing the sensor load of the existing rover, a terrain classification and recognition method based on vibration is proposed. Firstly, the time-frequency domain transformation of vibration information is realized by fast Fourier transform (FFT), and the characteristic representation of vibration information is given. Secondly, a deep neural network based on multi-layer perception is designed to realize classification of different terrains. Finally, combined with the Jackal unmanned vehicle platform, the XQ unmanned vehicle platform, and the vibration sensor, the terrain classification comparison test based on five different terrains was completed. The results show that the proposed algorithm has higher classification accuracy, and different platforms and running speeds have certain influence on the terrain classification at the same time, which provides support for subsequent practical applications.

摘要

准确分类和识别探测到的地形是行星探测器长途巡逻任务的基础。但基于视觉和雷达的地形测量受光照变化和沙尘暴等条件的影响。本文在不增加现有探测器传感器负载的前提下,提出了一种基于振动的地形分类与识别方法。首先,通过快速傅里叶变换(FFT)实现振动信息的时频域变换,并给出振动信息的特征表示。其次,设计了一种基于多层感知器的深度神经网络来实现不同地形的分类。最后,结合豺狼无人车平台、XQ无人车平台和振动传感器,完成了基于五种不同地形的地形分类对比试验。结果表明,所提算法具有较高的分类精度,同时不同平台和运行速度对地形分类有一定影响,为后续实际应用提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1152/6679340/76483b07677a/sensors-19-03102-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验