Suppr超能文献

具有双目标函数的核磁共振T-T反演

Nuclear magnetic resonance T-T inversion with double objective functions.

作者信息

Guo Jiangfeng, Xie Ranhong, Xiao Lizhi, Jin Guowen, Gao Lun

机构信息

State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China; Key Laboratory of Earth Prospecting and Information Technology, China University of Petroleum (Beijing), Beijing 102249, China.

State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China; Key Laboratory of Earth Prospecting and Information Technology, China University of Petroleum (Beijing), Beijing 102249, China.

出版信息

J Magn Reson. 2019 Nov;308:106562. doi: 10.1016/j.jmr.2019.07.049. Epub 2019 Jul 17.

Abstract

We report an effective and robust method for nuclear magnetic resonance (NMR) longitudinal relaxation time-transverse relaxation time (T-T) inversion with double objective functions. First, we develop the first objective function based on L1 regularization, proposed an effective method to choose the optimum L1 regularization parameter, and solve the objective function employing a two-step iterative shrinkage/thresholding algorithm. Subsequently, we update the kernel matrix based on the solution of the first objective function, and then develop the second objective function using the measured data and updated kernel matrix based on the least-squares principle, and we use the conjugate gradient algorithm for the first time to solve the objective function about NMR data inversion. To improve the speed of NMR T-T inversion, we present a Gaussian-based random SVD method. Finally, numerical and experimental examples are done to test the robustness of the proposed inversion method. The results indicate that the proposed inversion method can effectively achieve NMR T-T inversion at a low data SNR.

摘要

我们报告了一种用于核磁共振(NMR)纵向弛豫时间 - 横向弛豫时间(T - T)反演的有效且稳健的方法,该方法具有双目标函数。首先,我们基于L1正则化开发了第一个目标函数,提出了一种选择最优L1正则化参数的有效方法,并采用两步迭代收缩/阈值算法求解该目标函数。随后,我们基于第一个目标函数的解更新核矩阵,然后基于最小二乘法原理,利用测量数据和更新后的核矩阵开发第二个目标函数,并首次使用共轭梯度算法求解关于NMR数据反演的目标函数。为了提高NMR T - T反演的速度,我们提出了一种基于高斯的随机奇异值分解(SVD)方法。最后,通过数值和实验示例来测试所提出反演方法的稳健性。结果表明,所提出的反演方法能够在低数据信噪比下有效地实现NMR T - T反演。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验