Guo Jiangfeng, Xie Ranhong, Xiao Lizhi, Jin Guowen, Gao Lun
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China; Key Laboratory of Earth Prospecting and Information Technology, China University of Petroleum (Beijing), Beijing 102249, China.
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China; Key Laboratory of Earth Prospecting and Information Technology, China University of Petroleum (Beijing), Beijing 102249, China.
J Magn Reson. 2019 Nov;308:106562. doi: 10.1016/j.jmr.2019.07.049. Epub 2019 Jul 17.
We report an effective and robust method for nuclear magnetic resonance (NMR) longitudinal relaxation time-transverse relaxation time (T-T) inversion with double objective functions. First, we develop the first objective function based on L1 regularization, proposed an effective method to choose the optimum L1 regularization parameter, and solve the objective function employing a two-step iterative shrinkage/thresholding algorithm. Subsequently, we update the kernel matrix based on the solution of the first objective function, and then develop the second objective function using the measured data and updated kernel matrix based on the least-squares principle, and we use the conjugate gradient algorithm for the first time to solve the objective function about NMR data inversion. To improve the speed of NMR T-T inversion, we present a Gaussian-based random SVD method. Finally, numerical and experimental examples are done to test the robustness of the proposed inversion method. The results indicate that the proposed inversion method can effectively achieve NMR T-T inversion at a low data SNR.
我们报告了一种用于核磁共振(NMR)纵向弛豫时间 - 横向弛豫时间(T - T)反演的有效且稳健的方法,该方法具有双目标函数。首先,我们基于L1正则化开发了第一个目标函数,提出了一种选择最优L1正则化参数的有效方法,并采用两步迭代收缩/阈值算法求解该目标函数。随后,我们基于第一个目标函数的解更新核矩阵,然后基于最小二乘法原理,利用测量数据和更新后的核矩阵开发第二个目标函数,并首次使用共轭梯度算法求解关于NMR数据反演的目标函数。为了提高NMR T - T反演的速度,我们提出了一种基于高斯的随机奇异值分解(SVD)方法。最后,通过数值和实验示例来测试所提出反演方法的稳健性。结果表明,所提出的反演方法能够在低数据信噪比下有效地实现NMR T - T反演。