Newbold Stephen C, Walsh Patrick, Massey David M, Hewitt Julie
U.S. EPA, National Center for Environmental Economics.
Landcare Research.
Environ Resour Econ (Dordr). 2018;69(3):529-553. doi: 10.1007/s10640-017-0209-5.
Analysts often extrapolate estimates of the value of environmental improvements reported in prior studies to evaluate new policy proposals, a practice sometimes referred to as "benefit transfer." Benefit transfer functions are frequently specified based on statistical considerations alone. However, such a purely statistical approach can lead to willingness-to-pay functions that fail to satisfy some aspects of theoretical consistency that may be especially important for policy evaluations. In this paper, we examine several previous meta-analyses of nonmarket valuation studies in light of the adding-up condition, which is one important aspect of theoretical validity. We then use meta-regression to estimate a new willingness-to-pay function for surface water quality improvements intended to be used for benefit transfers. We estimate the meta-regression model using summary results from 51 previously published stated preference studies. An important feature of our approach is that we develop the meta-regression estimating equation to ensure that the resulting benefit transfer function will necessarily comply with the adding-up condition. This is achieved by first specifying a marginal willingness-to-pay function and then deriving an expression for total willingness-to-pay. This leads to a non-linear estimating equation, so we estimate the parameters of the model using non-linear least squares. We discuss the advantages and disadvantages of our approach relative to other structural approaches, and we compare our empirical results to a more traditional nonstructural meta-regression model. Finally, we examine the quantitative importance of imposing the adding-up condition in our case study by performing some illustrative calculations of willingness-to-pay for hypothetical water quality improvements using both structural and non-structural models.
分析人员常常根据先前研究报告的环境改善价值估算来推断,以评估新的政策提案,这种做法有时被称为“效益转移”。效益转移函数通常仅基于统计考量来设定。然而,这种纯粹的统计方法可能会导致支付意愿函数无法满足理论一致性的某些方面,而这些方面对于政策评估可能尤为重要。在本文中,我们根据理论有效性的一个重要方面——加总条件,审视了先前几项关于非市场估值研究的元分析。然后,我们使用元回归来估计一个用于地表水水质改善的新支付意愿函数,旨在用于效益转移。我们使用51项先前发表的陈述偏好研究的汇总结果来估计元回归模型。我们方法的一个重要特征是,我们开发元回归估计方程,以确保所得的效益转移函数必然符合加总条件。这是通过首先设定边际支付意愿函数,然后推导出总支付意愿的表达式来实现的。这导致了一个非线性估计方程,所以我们使用非线性最小二乘法来估计模型的参数。我们讨论了我们的方法相对于其他结构方法的优缺点,并将我们的实证结果与一个更传统的非结构元回归模型进行了比较。最后,我们通过使用结构模型和非结构模型对假设的水质改善进行一些支付意愿的说明性计算,来检验在我们的案例研究中施加加总条件的定量重要性。