Suppr超能文献

非固定效应也非随机效应:加权最小二乘法荟萃分析。

Neither fixed nor random: weighted least squares meta-analysis.

作者信息

Stanley T D, Doucouliagos Hristos

机构信息

Department of Economics, Hendrix College, 1600 Washington St., Conway, 72032, AR, U.S.A.

出版信息

Stat Med. 2015 Jun 15;34(13):2116-27. doi: 10.1002/sim.6481. Epub 2015 Mar 23.

Abstract

This study challenges two core conventional meta-analysis methods: fixed effect and random effects. We show how and explain why an unrestricted weighted least squares estimator is superior to conventional random-effects meta-analysis when there is publication (or small-sample) bias and better than a fixed-effect weighted average if there is heterogeneity. Statistical theory and simulations of effect sizes, log odds ratios and regression coefficients demonstrate that this unrestricted weighted least squares estimator provides satisfactory estimates and confidence intervals that are comparable to random effects when there is no publication (or small-sample) bias and identical to fixed-effect meta-analysis when there is no heterogeneity. When there is publication selection bias, the unrestricted weighted least squares approach dominates random effects; when there is excess heterogeneity, it is clearly superior to fixed-effect meta-analysis. In practical applications, an unrestricted weighted least squares weighted average will often provide superior estimates to both conventional fixed and random effects.

摘要

本研究对两种核心的传统荟萃分析方法提出了挑战

固定效应和随机效应。我们展示了无限制加权最小二乘估计器在存在发表(或小样本)偏倚时如何以及为何优于传统随机效应荟萃分析,并且在存在异质性时比固定效应加权平均值更优。效应大小、对数比值比和回归系数的统计理论及模拟表明,当不存在发表(或小样本)偏倚时,这种无限制加权最小二乘估计器能提供与随机效应相当的令人满意的估计值和置信区间,而当不存在异质性时,它与固定效应荟萃分析相同。当存在发表选择偏倚时,无限制加权最小二乘方法优于随机效应;当存在过度异质性时,它明显优于固定效应荟萃分析。在实际应用中,无限制加权最小二乘加权平均值通常会比传统的固定效应和随机效应提供更优的估计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验