Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, 60451-970, Brazil.
Federal Institute of Education, Science and Technology of Paraíba, Campus Princesa Isabel, Princesa Isabel, Paraíba, Brazil.
Plant Mol Biol. 2019 Oct;101(3):269-296. doi: 10.1007/s11103-019-00903-0. Epub 2019 Jul 23.
The first transcriptome coupled to metabolite analyses reveals major trends during acerola fruit ripening and shed lights on ascorbate, ethylene signalling, cellular respiration, sugar accumulation, and softening key regulatory genes. Acerola is a fast growing and ripening fruit that exhibits high amounts of ascorbate. During ripening, the fruit experience high respiratory rates leading to ascorbate depletion and a quickly fragile and perishable state. Despite its growing economic importance, understanding of its developmental metabolism remains obscure due to the absence of genomic and transcriptomic data. We performed an acerola transcriptome sequencing that generated over 600 million reads, 40,830 contigs, and provided the annotation of 25,298 unique transcripts. Overall, this study revealed the main metabolic changes that occur in the acerola ripening. This transcriptional profile linked to metabolite measurements, allowed us to focus on ascorbate, ethylene, respiration, sugar, and firmness, the major metabolism indicators for acerola quality. Our results suggest a cooperative role of several genes involved in AsA biosynthesis (PMM, GMP1 and 3, GME1 and 2, GGP1 and 2), translocation (NAT3, 4, 6 and 6-like) and recycling (MDHAR2 and DHAR1) pathways for AsA accumulation in unripe fruits. Moreover, the association of metabolites with transcript profiles provided a comprehensive understanding of ethylene signalling, respiration, sugar accumulation and softening of acerola, shedding light on promising key regulatory genes. Overall, this study provides a foundation for further examination of the functional significance of these genes to improve fruit quality traits.
第一篇转录组与代谢物分析相结合的研究揭示了樱桃番茄果实成熟过程中的主要趋势,并阐明了抗坏血酸、乙烯信号转导、细胞呼吸、糖积累和软化的关键调控基因。樱桃番茄是一种快速生长和成熟的水果,其抗坏血酸含量很高。在成熟过程中,果实经历高呼吸速率,导致抗坏血酸耗尽,果实迅速变得脆弱易碎。尽管樱桃番茄具有重要的经济价值,但由于缺乏基因组和转录组数据,其发育代谢的理解仍不清楚。我们进行了樱桃番茄转录组测序,生成了超过 6 亿个reads,40830 个contigs,并提供了 25298 个独特转录本的注释。总的来说,这项研究揭示了樱桃番茄成熟过程中发生的主要代谢变化。这种与代谢物测量相关的转录谱,使我们能够专注于抗坏血酸、乙烯、呼吸、糖和硬度,这些是樱桃番茄品质的主要代谢指标。我们的研究结果表明,几个参与抗坏血酸生物合成(PMM、GMP1 和 3、GME1 和 2、GGP1 和 2)、转运(NAT3、4、6 和 6 样)和循环(MDHAR2 和 DHAR1)途径的基因在未成熟果实中抗坏血酸积累中发挥协同作用。此外,代谢物与转录谱的关联为我们提供了对乙烯信号转导、呼吸、糖积累和樱桃番茄软化的全面理解,揭示了有希望的关键调控基因。总的来说,这项研究为进一步研究这些基因的功能意义以改善果实品质特性提供了基础。