Suppr超能文献

基因组数据揭示了深层遗传结构,但不支持当前对一个蝗虫物种复合体的分类学命名。

Genomic data reveal deep genetic structure but no support for current taxonomic designation in a grasshopper species complex.

机构信息

Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.

Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.

出版信息

Mol Ecol. 2019 Sep;28(17):3869-3886. doi: 10.1111/mec.15189. Epub 2019 Aug 29.

Abstract

Taxonomy has traditionally relied on morphological and ecological traits to interpret and classify biological diversity. Over the last decade, technological advances and conceptual developments in the field of molecular ecology and systematics have eased the generation of genomic data and changed the paradigm of biodiversity analysis. Here we illustrate how traditional taxonomy has led to species designations that are supported neither by high throughput sequencing data nor by the quantitative integration of genomic information with other sources of evidence. Specifically, we focus on Omocestus antigai and Omocestus navasi, two montane grasshoppers from the Pyrenean region that were originally described based on quantitative phenotypic differences and distinct habitat associations (alpine vs. Mediterranean-montane habitats). To validate current taxonomic designations, test species boundaries, and understand the factors that have contributed to genetic divergence, we obtained phenotypic (geometric morphometrics) and genome-wide SNP data (ddRADSeq) from populations covering the entire known distribution of the two taxa. Coalescent-based phylogenetic reconstructions, integrative Bayesian model-based species delimitation, and landscape genetic analyses revealed that populations assigned to the two taxa show a spatial distribution of genetic variation that do not match with current taxonomic designations and is incompatible with ecological/environmental speciation. Our results support little phenotypic variation among populations and a marked genetic structure that is mostly explained by geographic distances and limited population connectivity across the abrupt landscapes characterizing the study region. Overall, this study highlights the importance of integrative approaches to identify taxonomic units and elucidate the evolutionary history of species.

摘要

分类学传统上依赖于形态学和生态学特征来解释和分类生物多样性。在过去的十年中,分子生态学和系统学领域的技术进步和概念发展,使得基因组数据的产生变得更加容易,并改变了生物多样性分析的范例。在这里,我们举例说明了传统分类学如何导致物种指定,这些指定既不受高通量测序数据的支持,也不受将基因组信息与其他证据来源进行定量整合的支持。具体来说,我们关注的是来自比利牛斯山脉的两种高山草蜢 Omocestus antigai 和 Omocestus navasi,它们最初是根据定量表型差异和独特的栖息地关联(高山与地中海-高山生境)来描述的。为了验证当前的分类指定,检验物种边界,并了解导致遗传分化的因素,我们从覆盖两个类群已知分布范围的种群中获得了表型(几何形态测量学)和全基因组 SNP 数据(ddRADSeq)。基于合并的系统发育重建、综合贝叶斯模型基于物种划定以及景观遗传分析表明,分配给两个类群的种群表现出遗传变异的空间分布,与当前的分类指定不匹配,并且与生态/环境物种形成不兼容。我们的研究结果支持种群之间的表型变化很小,而遗传结构明显,这主要由地理距离和研究区域特征性的突然景观中的有限种群连通性来解释。总的来说,这项研究强调了综合方法在确定分类单元和阐明物种进化历史方面的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验