Suppr超能文献

The mechanism of glycogen synthetase as determined by deuterium isotope effects and positional isotope exchange experiments.

作者信息

Kim S C, Singh A N, Raushel F M

机构信息

Department of Chemistry, Texas A&M University, College Station 77843-3255.

出版信息

J Biol Chem. 1988 Jul 25;263(21):10151-4.

PMID:3134344
Abstract

The reaction mechanism for glycogen synthetase from rabbit muscle was examined by alpha-secondary deuterium isotope effects and positional exchange experiments. Incubation of glycogen synthetase with [beta-18O2,alpha beta-18O]UDP-Glc did not result in any detectable positional isotope exchange from the beta-nonbridge position to the anomeric oxygen of the glucose moiety. Glucono-1,5-lactone was found to be a noncompetitive inhibitor versus UDP-Glc. The kinetic constants, K(is) and K(ii), were found to be 91 +/- 4 microM and 0.70 +/- 0.09 mM, respectively. Deoxynojirimycin was a nonlinear inhibitor at pH 7.5. The alpha-secondary deuterium isotope effects were measured with [1-2H]UDP-Glc by the direct comparison method. The isotope effects on Vmax and Vmax/K were found to be 1.23 +/- 0.04 and 1.09 +/- 0.06, respectively. The inhibitory effects by glucono-lactone and deoxynojirimycon plus the large alpha-secondary isotope effect on Vmax have been interpreted to show that an oxocarbonium ion is an intermediate in this reaction mechanism. The lack of a detectable positional isotope exchange reaction in the absence of glycogen suggests the formation of a rigid tight ion pair between UDP and the oxocarbonium ion intermediate.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验