Suppr超能文献

具有复制时间序列的分段线性趋势的贝叶斯检测及其在生长数据建模中的应用

Bayesian Detection of Piecewise Linear Trends in Replicated Time-Series with Application to Growth Data Modelling.

作者信息

Papastamoulis Panagiotis, Furukawa Takanori, van Rhijn Norman, Bromley Michael, Bignell Elaine, Rattray Magnus

机构信息

Department of Statistics, School of Information Sciences and Technology, Athens University of Economics and Business, Patision 76, 104 34Athens, Greece.

Division of Infection, Immunity & Respiratory Medicine, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.

出版信息

Int J Biostat. 2019 Jul 25;16(1):ijb-2018-0052. doi: 10.1515/ijb-2018-0052.

Abstract

We consider the situation where a temporal process is composed of contiguous segments with differing slopes and replicated noise-corrupted time series measurements are observed. The unknown mean of the data generating process is modelled as a piecewise linear function of time with an unknown number of change-points. We develop a Bayesian approach to infer the joint posterior distribution of the number and position of change-points as well as the unknown mean parameters. A-priori, the proposed model uses an overfitting number of mean parameters but, conditionally on a set of change-points, only a subset of them influences the likelihood. An exponentially decreasing prior distribution on the number of change-points gives rise to a posterior distribution concentrating on sparse representations of the underlying sequence. A Metropolis-Hastings Markov chain Monte Carlo (MCMC) sampler is constructed for approximating the posterior distribution. Our method is benchmarked using simulated data and is applied to uncover differences in the dynamics of fungal growth from imaging time course data collected from different strains. The source code is available on CRAN.

摘要

我们考虑这样一种情况

一个时间过程由具有不同斜率的连续段组成,并且观测到了经过噪声干扰的重复时间序列测量值。数据生成过程的未知均值被建模为时间的分段线性函数,其中变化点的数量未知。我们开发了一种贝叶斯方法来推断变化点的数量和位置以及未知均值参数的联合后验分布。先验地,所提出的模型使用了过多的均值参数,但在一组变化点的条件下,只有其中的一个子集影响似然性。变化点数量上的指数递减先验分布导致后验分布集中于基础序列的稀疏表示。构建了一个Metropolis-Hastings马尔可夫链蒙特卡罗(MCMC)采样器来近似后验分布。我们的方法通过模拟数据进行基准测试,并应用于从不同菌株收集的成像时间序列数据中揭示真菌生长动态的差异。源代码可在CRAN上获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验