Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154, Anshan Street, Heping District, 300052, Tianjin China; Institute of Orthopaedics, Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, 300211 Tianjin, China.
Institute of Orthopaedics, Tianjin Hospital, No. 406, Jiefang Nan Street, Hexi District, 300211 Tianjin, China.
Orthop Traumatol Surg Res. 2020 Feb;106(1):95-101. doi: 10.1016/j.otsr.2019.04.027. Epub 2019 Jul 22.
The optimal type of fixation implant for managing subtrochanteric fractures (STFs) is debated, as uncertainty continues to surround the comparative biomechanical performance of the proximal femoral nail antirotation (PFNA), proximal femoral locking plate (PFLP), and reverse less invasive stabilisation system (LISS). No studies have used finite element analysis (FEA) to compare these three devices. The objective of this study was to use FEA to compare the PFNA, PFLP, and LISS used to treat STFs based on the following criteria: (1) stress distribution on the femur and implant, (2) peak stress and stress on the medial side of the femur near the fracture site, and (3) smallest axial displacement of the femoral head.
Of the three implants, the PFNA has the best biomechanical performance when used for STF fixation.
FEA was used to assess synthetic bone responses to the three implants used to fix three STF types, namely, Seinsheimer I, III, and IV, characterised by increasing bone loss and/or comminution with subsequent instability. Loading was with 1400N axial compression force.
The LISS and PFLP exhibited similar biomechanical properties in all three fracture types. However, with the Seinsheimer IV fracture, the triangular configuration of the PFLP resulted in stress concentration at the medial and lateral sides of the implant junction. With the Seinsheimer I and III fractures, the PFNA resulted in higher peak stress (183.85MPa and 364.58MPa, respectively) compared to the PFLP (102.90MPa and 177.52MPa) and LISS (116.55MPa and 227.97MPa). With the Seinsheimer IV fracture, peak stress was highest with LISS (2310.40MPa) and was higher with PFLP (2054.90MPa) than with PFNA (1313.30MPa). With the Seinsheimer I and III fractures, the axial femoral head displacement was greater with the PFNA (0.74mm and 1.13mm, respectively) than with the PFLP (0.48mm and 1.02mm) and LISS (0.52mm and 0.92mm). With the Seinsheimer IV fracture, in contrast, the PFNA produced less axial femoral head displacement (4.1mm) compared to the PFLP (12.03mm) and LISS (16.56mm).
With unstable (Seinsheimer IV) STFs, fixation stability was better with the PFNA compared to the PFLP and LISS. In contrast, with stable STFs (Seinsheimer I and III), the PFLP and LISS offered greater stability, with similar biomechanical effects. However, with Seinsheimer III fractures, the stress on the implant-femur interface was greater with the LISS.
IV, basic science study.
对于管理股骨转子下骨折(STF),哪种固定植入物是最佳的仍存在争议,因为关于股骨近端防旋髓内钉(PFNA)、股骨近端锁定钢板(PFLP)和反向微创稳定系统(LISS)的比较生物力学性能的不确定性仍然存在。目前尚无研究使用有限元分析(FEA)来比较这三种设备。本研究的目的是使用 FEA 来比较治疗 STF 时使用的 PFNA、PFLP 和 LISS,依据如下标准:(1)股骨和植入物的应力分布;(2)股骨内侧靠近骨折部位的峰值和应力;(3)股骨头的最小轴向位移。
在治疗 STF 固定时,这三种植入物中,PFNA 的生物力学性能最佳。
FEA 用于评估三种用于治疗三种 STF 类型(即 Seinsheimer I、III 和 IV 型)的合成骨对三种植入物的反应,这些类型的骨折特征是骨丢失和/或粉碎程度增加,从而导致随后的不稳定性。加载时施加 1400N 的轴向压缩力。
LISS 和 PFLP 在所有三种骨折类型中均具有相似的生物力学特性。然而,对于 Seinsheimer IV 型骨折,PFLP 的三角形结构导致了植入物交界处的内侧和外侧的应力集中。对于 Seinsheimer I 和 III 型骨折,PFNA 导致的峰值应力(分别为 183.85MPa 和 364.58MPa)高于 PFLP(分别为 102.90MPa 和 177.52MPa)和 LISS(分别为 116.55MPa 和 227.97MPa)。对于 Seinsheimer IV 型骨折,LISS 的峰值应力最高(2310.40MPa),高于 PFLP(2054.90MPa)和 PFNA(1313.30MPa)。对于 Seinsheimer I 和 III 型骨折,PFNA 的股骨头轴向位移大于 PFLP(分别为 0.74mm 和 1.13mm)和 LISS(分别为 0.52mm 和 0.92mm)。相比之下,对于 Seinsheimer IV 型骨折,PFNA 产生的股骨头轴向位移(4.1mm)小于 PFLP(12.03mm)和 LISS(16.56mm)。
对于不稳定的(Seinsheimer IV 型)STF,PFNA 固定的稳定性优于 PFLP 和 LISS。相比之下,对于稳定的 STF(Seinsheimer I 和 III 型),PFLP 和 LISS 提供了更大的稳定性,具有相似的生物力学效应。然而,对于 Seinsheimer III 型骨折,LISS 的植入物-股骨界面上的应力更大。
IV 级,基础科学研究。