Khan Firoz, Kim Jae Hyun
Center of Research Excellence in Renewable Energy (CoRERE), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
Smart Textile Convergence Research Group, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-Daero, Hyeonpung-Myeon, Dalseong-Gun, Daegu, 42988, Republic of Korea.
Sci Rep. 2019 Jul 25;9(1):10803. doi: 10.1038/s41598-019-47068-w.
Graphene quantum dots (GQDs) have several advantages over inorganic quantum dots owing to their beneficial properties. Recently, GQDs have been used as downconverters in photovoltaic devices. However, the application of GQDs in most emergent thin-film-based Cu(In, Ga)Se (CIGS) photovoltaic cells is limited because of either low photoluminescence (PL) quantum yield (QY) or a small Stokes shift (Δλ). Therefore, GQDs with an ultrahigh QY and large Δλ are essential to realizing the two emergent fields, i.e., the application of GQDs in CIGS photovoltaic solar cells. In this regard, we synthesized nitrogen-functionalized GQDs (NGQDs) with an ultrahigh QY (77-99%) and a large Δλ (95-155 nm) via tailoring of the nitrogen and oxygen moieties. The NGQDs were applied in CIGS solar cells to evaluate their downconversion efficiency. Our study shows that the emission wavelength (λ)-dependent photoluminescence decay lifetime (τ) determines the down-conversion efficiency of the nitrogen-functionalized graphene quantum dots. With the increase in τ at λ > 500 nm, the conversion efficiencies of the NGQDs coated-CIGS solar cells increased by 12.22%. Thus, the increase in τ at λ > 500 nm significantly increased the maximum current output and thus enhanced the solar-cell performance.
与无机量子点相比,石墨烯量子点(GQDs)因其优良特性而具有诸多优势。最近,GQDs已被用作光伏器件中的下转换材料。然而,由于光致发光(PL)量子产率(QY)低或斯托克斯位移(Δλ)小,GQDs在大多数新兴的基于薄膜的铜铟镓硒(CIGS)光伏电池中的应用受到限制。因此,具有超高QY和大Δλ的GQDs对于实现这两个新兴领域至关重要,即GQDs在CIGS光伏太阳能电池中的应用。在这方面,我们通过调整氮和氧部分合成了具有超高QY(77 - 99%)和大Δλ(95 - 155 nm)的氮功能化GQDs(NGQDs)。将NGQDs应用于CIGS太阳能电池以评估其下转换效率。我们的研究表明,发射波长(λ)相关的光致发光衰减寿命(τ)决定了氮功能化石墨烯量子点的下转换效率。在λ > 500 nm时,随着τ的增加,涂覆有NGQDs的CIGS太阳能电池的转换效率提高了12.22%。因此,在λ > 500 nm时τ的增加显著提高了最大电流输出,从而提升了太阳能电池的性能。