Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Department of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Sci Rep. 2019 Jul 25;9(1):10826. doi: 10.1038/s41598-019-47326-x.
The Cu/Zn-superoxide dismutase (SOD1) is a ubiquitous enzyme that catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide. In addition to this principal reaction, the enzyme is known to catalyze, with various efficiencies, several redox side-reactions using alternative substrates, including biological thiols, all involving the catalytic copper in the enzyme's active-site, which is relatively surface exposed. The accessibility and reactivity of the catalytic copper is known to increase upon SOD1 misfolding, structural alterations caused by a mutation or environmental stresses. These competing side-reactions can lead to the formation of particularly toxic ROS, which have been proposed to contribute to oxidative damage in amyotrophic lateral sclerosis (ALS), a neurodegenerative disease that affects motor neurons. Here, we demonstrated that metal-saturated SOD1 (holo-SOD1) and a familial ALS (fALS) catalytically active SOD1 mutant, SOD1, are capable, under defined metabolic circumstances, to generate cytotoxic quantities of HO through cysteine (CSH)/glutathione (GSH) redox short-circuit. Such activity may drain GSH stores, therefore discharging cellular antioxidant potential. By analyzing the distribution of thiol compounds throughout the CNS, the location of potential hot-spots of ROS production can be deduced. These hot-spots may constitute the origin of oxidative damage to neurons in ALS.
铜/锌超氧化物歧化酶(SOD1)是一种普遍存在的酶,能够催化超氧自由基歧化为氧和过氧化氢。除了主要反应之外,该酶还已知能够以不同的效率催化几种氧化还原副反应,使用替代底物,包括生物硫醇,所有这些反应都涉及到酶活性部位的催化铜,该铜相对表面暴露。已知 SOD1 错误折叠、突变或环境压力引起的结构改变会增加催化铜的可及性和反应性。这些竞争副反应可能导致形成特别有毒的 ROS,据推测这些 ROS 会导致肌萎缩侧索硬化症(ALS)的氧化损伤,ALS 是一种影响运动神经元的神经退行性疾病。在这里,我们证明了金属饱和 SOD1(全酶 SOD1)和家族性 ALS(fALS)催化活性 SOD1 突变体 SOD1 在特定代谢条件下能够通过半胱氨酸(CSH)/谷胱甘肽(GSH)氧化还原短路生成细胞毒性数量的 HO。这种活性可能会耗尽 GSH 储存,从而释放细胞抗氧化潜力。通过分析 CNS 中硫醇化合物的分布,可以推断出潜在 ROS 产生热点的位置。这些热点可能构成 ALS 中神经元氧化损伤的起源。