Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
CSIRO, Private Bag 10, Clayton South, VIC 3169, Australia.
Chemistry. 2019 Oct 11;25(57):13184-13188. doi: 10.1002/chem.201902560. Epub 2019 Sep 13.
Metal-organic frameworks (MOFs) have an unprecedented ability to store gas molecules, however energy efficient regeneration remains challenging. Use of magnetic induction to aid this shows promise, but economical synthesis of the requisite composites is unresolved. Continuous flow chemistry has been reported as a rapid and reliable method of MOF synthesis, delivering step-change improvements in space time yields (STY). Here the scalable production of nanomaterials suitable for regeneration by magnetic induction is demonstrated. The zirconium MOF composite, MgFe O @UiO-66-NH is prepared using continuous flow chemistry resulting in a material of comparable performance to its batch counterpart. Upscaling using flow chemistry gave STY >25 times that of batch synthesis. Magnetic induced regeneration using this mass produced MFC for carbon capture is then demonstrated.
金属-有机骨架(MOFs)具有存储气体分子的空前能力,然而,高效节能的再生仍然具有挑战性。使用磁感应来辅助这一过程具有很大的前景,但所需复合材料的经济合成仍未得到解决。连续流动化学已被报道为一种快速可靠的 MOF 合成方法,可显著提高时空产率(STY)。在这里,展示了适用于磁感应再生的纳米材料的可扩展生产。使用连续流动化学制备了锆 MOF 复合材料 MgFe O @UiO-66-NH,所得材料的性能与批量合成的材料相当。使用流动化学放大后,STY 是批量合成的 25 倍以上。然后,使用这种大规模生产的 MFC 进行碳捕获的磁感应再生进行了演示。