Shanghai Center for Quantitative Life Sciences and Physics Department, Shanghai University, Shanghai 200444, China.
Shanghai Key Lab of Modern Optical System, School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
Phys Rev Lett. 2019 Jun 28;122(25):257402. doi: 10.1103/PhysRevLett.122.257402.
We uncover a novel phenomenon from a recent artificial light-harvesting experiment [P.-Z. Chen et al., Angew. Chem., Int. Ed. Engl. 55, 2759 (2016)ACIEAY0570-083310.1002/anie.201510503] on organic nanocrystals of self-assembled difluoroboron chromophores. A resonant confinement of a polariton under strong photon-exciton coupling is predicted to exist within the microcavity of the crystal's own natural boundaries. Moreover, the radiative energy of a localized exciton falls into the spectrum of confinement. Hence, in the experiment, the spontaneous emission of an excited pigment would undergo a two-step process. It should first decay to an excitonic polariton trapped by the cavity resonance. The intermediate polariton could then funnel the energy directly to a doped acceptor, leading to the over 90% transfer efficiency observed at less than 1/1000 acceptor/donor ratio. The proposed mechanism is supported by parameter-free analyses entirely based on experiment data. Our finding may imply possible polariton-mediated pathways for energy transfers in biological photosynthesis.
我们从最近的一个关于有机纳米晶体自组装二氟硼发色团的人工光捕获实验中发现了一个新现象[P.-Z. Chen 等人,Angew. Chem., Int. Ed. Engl. 55, 2759 (2016)ACIEAY0570-083310.1002/anie.201510503]。在晶体自身自然边界的微腔中,预测存在一个在强光子-激子耦合下的极化激元的共振限制。此外,局域激子的辐射能量落入限制谱中。因此,在实验中,受激颜料的自发发射将经历一个两步过程。它首先会衰减到被腔共振捕获的激子极化激元。然后,中间极化激元可以将能量直接引导到掺杂的受体上,导致在不到 1/1000 的受体/供体比下观察到超过 90%的转移效率。所提出的机制得到了完全基于实验数据的无参数分析的支持。我们的发现可能意味着生物光合作用中可能存在极化子介导的能量转移途径。