Pandya Raj, Chen Richard Y S, Gu Qifei, Sung Jooyoung, Schnedermann Christoph, Ojambati Oluwafemi S, Chikkaraddy Rohit, Gorman Jeffrey, Jacucci Gianni, Onelli Olimpia D, Willhammar Tom, Johnstone Duncan N, Collins Sean M, Midgley Paul A, Auras Florian, Baikie Tomi, Jayaprakash Rahul, Mathevet Fabrice, Soucek Richard, Du Matthew, Alvertis Antonios M, Ashoka Arjun, Vignolini Silvia, Lidzey David G, Baumberg Jeremy J, Friend Richard H, Barisien Thierry, Legrand Laurent, Chin Alex W, Yuen-Zhou Joel, Saikin Semion K, Kukura Philipp, Musser Andrew J, Rao Akshay
Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK.
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Nat Commun. 2021 Nov 11;12(1):6519. doi: 10.1038/s41467-021-26617-w.
Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 10m s), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.
激子与受限光子模式之间的强耦合可导致形成新的准粒子,即激子极化激元,其可展现出一系列有趣的特性,如超流性、超快输运和玻色-爱因斯坦凝聚。强耦合通常发生在激子材料被限制在介电或等离子体微腔中时。在此,我们表明,尽管没有外部腔,在一系列化学性质多样的有机半导体薄膜中,室温下仍可形成极化激元。我们通过材料反射光谱中与角度相关的峰分裂以及集体极化激元态的发射,发现了强光-物质耦合的证据。我们还通过直接成像其超快(5×10⁻⁶ s)、超长(约270 nm)输运,表明激子极化激元是这些有机材料中的主要光激发。这些结果开启了新的基础物理学,并有望实现基于无腔激子极化激元的新一代有机光电器件和光捕获器件。