Fernandez-Pañella A, Millot M, Fratanduono D E, Desjarlais M P, Hamel S, Marshall M C, Erskine D J, Sterne P A, Haan S, Boehly T R, Collins G W, Eggert J H, Celliers P M
Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Sandia National Laboratories, Albuquerque, New Mexico 87185, USA.
Phys Rev Lett. 2019 Jun 28;122(25):255702. doi: 10.1103/PhysRevLett.122.255702.
We present laser-driven shock compression experiments on cryogenic liquid deuterium to 550 GPa along the principal Hugoniot and reflected-shock data up to 1 TPa. High-precision interferometric Doppler velocimetry and impedance-matching analysis were used to determine the compression accurately enough to reveal a significant difference as compared to state-of-the-art ab initio calculations and thus, no single equation of state model fully matches the principal Hugoniot of deuterium over the observed pressure range. In the molecular-to-atomic transition pressure range, models based on density functional theory calculations predict the maximum compression accurately. However, beyond 250 GPa along the principal Hugoniot, first-principles models exhibit a stiffer response than the experimental data. Similarly, above 500 GPa the reflected shock data show 5%-7% higher compression than predicted by all current models.
我们展示了在低温液态氘上沿主雨贡纽曲线进行的激光驱动冲击压缩实验,压力高达550吉帕,并给出了高达1太帕的反射冲击数据。利用高精度干涉多普勒测速法和阻抗匹配分析来精确确定压缩情况,以揭示与最新的从头算计算相比的显著差异,因此,在观察到的压力范围内,没有单一的状态方程模型能完全匹配氘的主雨贡纽曲线。在分子到原子的转变压力范围内,基于密度泛函理论计算的模型能准确预测最大压缩情况。然而,沿主雨贡纽曲线超过250吉帕后,第一性原理模型表现出比实验数据更硬的响应。同样,在500吉帕以上,反射冲击数据显示的压缩比所有当前模型预测的高5% - 7%。