Ewald N V, Feldker T, Hirzler H, Fürst H A, Gerritsma R
Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, the Netherlands.
Phys Rev Lett. 2019 Jun 28;122(25):253401. doi: 10.1103/PhysRevLett.122.253401.
We report on the observation of interactions between ultracold Rydberg atoms and ions in a Paul trap. The rate of observed inelastic collisions, which manifest themselves as charge transfer between the Rydberg atoms and ions, exceeds that of Langevin collisions for ground state atoms by about 3 orders of magnitude. This indicates a huge increase in interaction strength. We study the effect of the vacant Paul trap's electric fields on the Rydberg excitation spectra. To quantitatively describe the exhibited shape of the ion loss spectra, we need to include the ion-induced Stark shift on the Rydberg atoms. Furthermore, we demonstrate Rydberg excitation on a dipole-forbidden transition with the aid of the electric field of a single trapped ion. Our results confirm that interactions between ultracold atoms and trapped ions can be controlled by laser coupling to Rydberg states. Adding dynamic Rydberg dressing may allow for the creation of spin-spin interactions between atoms and ions, and the elimination of collisional heating due to ionic micromotion in atom-ion mixtures.
我们报告了在保罗阱中对超冷里德堡原子与离子之间相互作用的观测。观测到的非弹性碰撞速率,表现为里德堡原子与离子之间的电荷转移,比基态原子的朗之万碰撞速率高出约3个数量级。这表明相互作用强度大幅增加。我们研究了空保罗阱的电场对里德堡激发光谱的影响。为了定量描述所呈现的离子损失光谱形状,我们需要考虑离子对里德堡原子的斯塔克位移。此外,我们借助单个捕获离子的电场在一个偶极禁戒跃迁上实现了里德堡激发。我们的结果证实,超冷原子与捕获离子之间的相互作用可以通过激光耦合到里德堡态来控制。添加动态里德堡缀饰可能会实现原子与离子之间自旋 - 自旋相互作用的创建,并消除原子 - 离子混合物中由于离子微运动导致的碰撞加热。