Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
Adv Mater. 2019 Sep;31(37):e1903277. doi: 10.1002/adma.201903277. Epub 2019 Jul 26.
Small interfering RNA (siRNA) holds inherent advantages and great potential for treating refractory diseases. However, lack of suitable siRNA delivery systems that demonstrate excellent circulation stability and effective at-site delivery ability is currently impeding siRNA therapeutic performance. Here, a polymeric siRNA nanomedicine (3I-NM@siRNA) stabilized by triple interactions (electrostatic, hydrogen bond, and hydrophobic) is constructed. Incorporating extra hydrogen and hydrophobic interactions significantly improves the physiological stability compared to an siRNA nanomedicine analog that solely relies on the electrostatic interaction for stability. The developed 3I-NM@siRNA nanomedicine demonstrates effective at-site siRNA release resulting from tumoral reactive oxygen species (ROS)-triggered sequential destabilization. Furthermore, the utility of 3I-NM@siRNA for treating glioblastoma (GBM) by functionalizing 3I-NM@siRNA nanomedicine with angiopep-2 peptide is enhanced. The targeted Ang-3I-NM@siRNA exhibits superb blood-brain barrier penetration and potent tumor accumulation. Moreover, by cotargeting polo-like kinase 1 and vascular endothelial growth factor receptor-2, Ang-3I-NM@siRNA shows effective suppression of tumor growth and significantly improved survival time of nude mice bearing orthotopic GBM brain tumors. New siRNA nanomedicines featuring triple-interaction stabilization together with inbuilt self-destruct delivery ability provide a robust and potent platform for targeted GBM siRNA therapy, which may have utility for RNA interference therapy of other tumors or brain diseases.
小干扰 RNA(siRNA)在治疗难治性疾病方面具有固有优势和巨大潜力。然而,目前缺乏合适的 siRNA 递药系统,这些系统既具有出色的循环稳定性,又能有效地实现靶向递药。在这里,构建了一种由三重相互作用(静电、氢键和疏水相互作用)稳定的聚合物 siRNA 纳米药物(3I-NM@siRNA)。与仅依靠静电相互作用来稳定的 siRNA 纳米药物类似物相比,额外的氢键和疏水相互作用的引入显著提高了生理稳定性。所开发的 3I-NM@siRNA 纳米药物由于肿瘤活性氧物质(ROS)触发的顺序失稳,能够实现有效的靶向 siRNA 释放。此外,通过用血管生成肽-3(angiopep-3)对 3I-NM@siRNA 纳米药物进行功能化,增强了 3I-NM@siRNA 用于治疗神经胶质瘤(GBM)的效用。靶向 Ang-3I-NM@siRNA 表现出优异的血脑屏障穿透能力和强大的肿瘤积累能力。此外,通过共靶向 Polo 样激酶 1 和血管内皮生长因子受体-2,Ang-3I-NM@siRNA 显示出有效抑制肿瘤生长的作用,并显著提高了荷有原位 GBM 脑肿瘤的裸鼠的存活时间。具有三重相互作用稳定作用和内置自毁递药能力的新型 siRNA 纳米药物为靶向 GBM siRNA 治疗提供了一个强大而有效的平台,可能对其他肿瘤或脑部疾病的 RNA 干扰治疗具有应用价值。
J Nanobiotechnology. 2023-7-5
Nanoscale. 2017-12-21
J Control Release. 2018-11-5
J Control Release. 2022-11
Biomater Sci. 2022-3-15
Commun Chem. 2025-4-2
Mol Pharm. 2025-3-3
Mater Today Bio. 2025-1-3
Polymers (Basel). 2024-12-13
Signal Transduct Target Ther. 2024-8-12
MedComm (2020). 2024-7-20