Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
Nano Lett. 2020 Mar 11;20(3):1637-1646. doi: 10.1021/acs.nanolett.9b04683. Epub 2020 Feb 7.
Nanotechnology-based RNA interference (RNAi) has shown great promise in overcoming the limitations of traditional clinical treatments for glioblastoma (GBM). However, because of the complexity of brain physiology, simple blood-brain barrier (BBB) penetration or tumor-targeting strategies cannot entirely meet the demanding requirements of different therapeutic delivery stages. Herein, we developed a charge conversional biomimetic nanoplatform with a three-layer core-shell structure to programmatically overcome persistent obstacles in siRNA delivery to GBM. The resulting nanocomplex presents good biocompatibility, prolonged blood circulation, high BBB transcytosis, effective tumor accumulation, and specific uptake by tumor cells in the brain. Moreover, red blood cell membrane (RBCm) disruption and effective siRNA release can be further triggered elegantly by charge conversion from negative to positive in the endo/lysosome (pH 5.0-6.5) of tumor cells, leading to highly potent target-gene silencing with a strong anti-GBM effect. Our study provides an intelligent biomimetic nanoplatform tailored for systemically siRNA delivery to GBM, leveraging Angiopep-2 peptide-modified, immune-free RBCm and charge conversional components. Improved therapeutic efficacy, higher survival rates, and minimized systemic side effects were achieved in orthotopic U87MG-luc human glioblastoma tumor-bearing nude mice.
基于纳米技术的 RNA 干扰 (RNAi) 在克服胶质母细胞瘤 (GBM) 传统临床治疗的局限性方面显示出巨大的潜力。然而,由于大脑生理学的复杂性,简单的血脑屏障 (BBB) 穿透或肿瘤靶向策略并不能完全满足不同治疗输送阶段的苛刻要求。在这里,我们开发了一种具有三层核壳结构的电荷转换仿生纳米平台,以程序化方式克服了向 GBM 递送 siRNA 的持续障碍。所得纳米复合物具有良好的生物相容性、延长的血液循环、高 BBB 转胞吞作用、有效的肿瘤积累以及大脑中肿瘤细胞的特异性摄取。此外,通过肿瘤细胞内体/溶酶体 (pH 5.0-6.5) 中电荷从负到正的转换,可以进一步巧妙地触发红细胞膜 (RBCm) 破裂和有效的 siRNA 释放,从而导致具有强大抗 GBM 作用的高效靶基因沉默。我们的研究提供了一种针对 GBM 系统递送 siRNA 的智能仿生纳米平台,利用了 Angiopep-2 肽修饰的、无免疫的 RBCm 和电荷转换组件。在荷人 U87MG-luc 胶质母细胞瘤肿瘤的裸鼠中,实现了更好的治疗效果、更高的存活率和最小化的全身副作用。
J Nanobiotechnology. 2023-7-5
Nanoscale. 2019-10-15
Beilstein J Nanotechnol. 2025-8-5
Nanomedicine (Lond). 2025-6
Mater Today Bio. 2025-4-17
Nat Rev Clin Oncol. 2025-4
Nanoscale Adv. 2024-6-20