Suppr超能文献

基于跟踪器信息和量化输出控制器的混合时滞半马尔可夫耦合神经网络的指数同步。

Exponential synchronization of semi-Markovian coupled neural networks with mixed delays via tracker information and quantized output controller.

机构信息

School of Mathematical Sciences, Chongqing Normal University, Chongqing, 401331, China.

School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao, 266061, China.

出版信息

Neural Netw. 2019 Oct;118:321-331. doi: 10.1016/j.neunet.2019.07.004. Epub 2019 Jul 17.

Abstract

In this paper, exponential synchronization of semi-Markovian coupled neural networks (NNs) with bounded time-varying delay and infinite-time distributed delay (mixed delays) is investigated. Since semi-Markov switching occurs by time-varying probability, it is difficult to capture its precise switching signal. To overcome this difficulty, a tracker is used to track the switching information with some accuracy. Then a quantized output controller (QOC) is designed by using the tracked information. Novel Lyapunov-Krasovskii functionals (LKFs) with negative terms and delay-partitioning approach, which reduce the conservativeness of the obtained results, are utilized to obtain LMI conditions ensuring the exponential synchronization. Moreover, an algorithm is proposed to design the control gains. Our results include both those derived by mode-dependent and mode-independent control schemes as special cases. Finally, numerical simulations validate the effectiveness of the methodology.

摘要

本文研究了具有界时变时滞和无穷时分布时滞(混合时滞)的半马尔可夫耦合神经网络(NNs)的指数同步。由于半马尔可夫切换是通过时变概率发生的,因此很难捕捉其精确的切换信号。为了克服这个困难,使用跟踪器来以一定的精度跟踪切换信息。然后,利用跟踪到的信息设计了量化输出控制器(QOC)。利用具有负项和延迟分区方法的新 Lyapunov-Krasovskii 泛函(LKFs),减少了所得到的结果的保守性,得到了确保指数同步的 LMI 条件。此外,还提出了一种算法来设计控制增益。我们的结果包括基于模式相关和模式无关控制方案的结果作为特例。最后,数值模拟验证了该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验