Suppr超能文献

使用硫化铜超粒子掺入空穴传输层的高性能钙钛矿太阳能电池。

High performance perovskite solar cells using CuS supraparticles incorporated hole transport layers.

作者信息

Zhou Xin, Li Zaifeng, Deng Xueshuang, Yan Bing, Wang Zengbo, Chen Xiaohong, Huang Sumei

机构信息

Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, People's Republic of China.

出版信息

Nanotechnology. 2019 Nov 1;30(44):445401. doi: 10.1088/1361-6528/ab3604.

Abstract

We disclose novel photovoltaic device physics and present details of device mechanisms by investigating perovskite solar cells (PSCs) incorporating CuS@SiO supraparticles (SUPs) into Spiro-OMeTAD based hole transport layers (HTLs). High quality colloidal CuS nanocrystals (NCs) were prepared using a hot-injection approach. Multiple CuS NCs were further embedded in silica to construct a CuS@SiO SUP. CuS@SiO SUPs were blended into Spiro-OMeTAD based HTLs with different weight ratios. Theoretical and experimental results show that the very strong light scattering or reflecting properties of CuS@SiO SUPs blended in the PSC device in a proper proportion distribute to increase the light energy trapped within the device, leading to significant enhancement of light absorption in the active layer. Additionally, the incorporated CuS@SiO SUPs can also promote the electrical conductivity and hole-transport capacity of the HTL. Significantly larger conductivity and higher hole injection efficiency were demonstrated in the HTM with the optimal weight ratios of CuS@SiO SUPs. As a result, efficient CuS SUPs based PSC devices were obtained with average power conversion efficiency (PCE) of 18.21% at an optimal weight ratio of CuS SUPs. Compared with PSC solar cells without CuS@SiO SUPs (of which the average PCE is 14.38%), a remarkable enhancement over 26% in average PCE was achieved. This study provides an innovative approach to efficiently promote the performance of PSC devices by employing optically stable, low-cost and green p-type semiconductor SUPs.

摘要

我们通过研究将硫化铜@二氧化硅超粒子(SUPs)并入基于螺环-OMeTAD的空穴传输层(HTLs)的钙钛矿太阳能电池(PSC),揭示了新型光伏器件物理特性并展示了器件机制的细节。采用热注入法制备了高质量的胶体硫化铜纳米晶体(NCs)。将多个硫化铜NCs进一步嵌入二氧化硅中以构建硫化铜@二氧化硅SUP。将硫化铜@二氧化硅SUPs以不同重量比混入基于螺环-OMeTAD的HTLs中。理论和实验结果表明,以适当比例混入PSC器件中的硫化铜@二氧化硅SUPs具有非常强的光散射或反射特性,可分布以增加捕获在器件内的光能,从而显著增强有源层中的光吸收。此外,掺入的硫化铜@二氧化硅SUPs还可促进HTL的电导率和空穴传输能力。在具有最佳重量比的硫化铜@二氧化硅SUPs的HTM中,表现出明显更大的电导率和更高的空穴注入效率。结果,获得了基于硫化铜SUPs的高效PSC器件,在硫化铜SUPs的最佳重量比下平均功率转换效率(PCE)为18.21%。与没有硫化铜@二氧化硅SUPs的PSC太阳能电池(其平均PCE为14.38%)相比,平均PCE显著提高了26%以上。本研究提供了一种创新方法,通过使用光学稳定、低成本且绿色的p型半导体SUPs来有效提升PSC器件的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验