Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil.
Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory (NNNESP Lab.), Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Graduate Program in Biological Science: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; Biosciences and Mass Spectrometry Laboratory, Pharmaceutical Sciences Department, Health Sciences Sector, Universidade Federal do Paraná, Curitiba 80210-170, PR, Brazil.
Brain Res. 2019 Nov 1;1722:146351. doi: 10.1016/j.brainres.2019.146351. Epub 2019 Jul 24.
Quantitative electroencephalogram analysis has been increasingly applied to study fine changes in brain oscillations in epilepsy. Here we aimed to evaluate interictal oscillations using pilocarpine model of epilepsy to identify changes in network synchronization. We analyzed the in vivo local field potential of two cortical layers (Ctx1, Ctx2) and hippocampal CA1 (stratum oriens-Ors, pyramidale-Pyr, radiatum-Rad and lacunosum-moleculare-LM) in rats, about 5 weeks after pilocarpine injection. Animals that had status epilepticus (SE) and later spontaneous recurrent seizures (SRS) (epileptic animals) exhibited higher delta power recorded in cortical and hippocampal Ors, Rad and LM electrodes. They also had lower power of theta in Ctx1, Ctx2, Ors and LM, lower slow gamma in Ctx1, Ctx2 and Ors, and lower middle and fast gamma power in Ors. NSE animals had higher delta and lower slow gamma power in Ctx1 only, and lower theta power in Ctx1, Ctx2 and LM. Essentially, epileptic animals had higher delta coherence between Ctx1-Ors, Ctx2-Ors, Ctx2-Pyr, Pyr-Ors and stronger phase-amplitude coupling (PAC) between delta and all frequencies in Rad. NSE animals, also had higher delta coherence between Ctx1-Ors and Ctx2-Ors with no changes in PAC, suggesting some cortical network reorganization. Our data suggest an increased synchrony in cortex and CA1 of epileptic animals, particularly for delta frequency with intense delta coupling in Rad, probably an important synchronization site. Understanding the rhythms organization at non-ictal state could provide insights about network connectivity involved in ictogenesis and seizure propagation.
定量脑电图分析已越来越多地应用于研究癫痫中的脑振荡细微变化。在这里,我们旨在使用匹鲁卡品癫痫模型评估发作间期振荡,以识别网络同步的变化。我们分析了大约在匹鲁卡品注射后 5 周的大鼠两个皮质层(Ctx1、Ctx2)和海马 CA1(层状或辐射状-Ors、锥体细胞-Pyr、辐射状-Rad 和腔隙状-分子层-LM)的体内局部场电位。患有癫痫持续状态(SE)和随后自发复发性发作(SRS)的动物(癫痫动物)在皮质和海马 Ors、Rad 和 LM 电极上记录到较高的 delta 功率。它们还具有较低的 Ctx1、Ctx2、Ors 和 LM 中的 theta 功率,较低的 Ctx1、Ctx2 和 Ors 中的慢 gamma 功率,以及较低的中 gamma 和快 gamma 功率在 Ors。NSE 动物仅在 Ctx1 中具有较高的 delta 和较低的慢 gamma 功率,以及在 Ctx1、Ctx2 和 LM 中较低的 theta 功率。基本上,癫痫动物在 Ctx1-Ors、Ctx2-Ors、Ctx2-Pyr、Pyr-Ors 之间具有较高的 delta 相干性,并且在 Rad 中 delta 与所有频率之间具有更强的相位-振幅耦合(PAC)。NSE 动物也在 Ctx1-Ors 和 Ctx2-Ors 之间具有更高的 delta 相干性,而 PAC 没有变化,这表明皮质网络发生了一些重组。我们的数据表明,癫痫动物的皮质和 CA1 中的同步性增加,特别是在 Rad 中具有强烈的 delta 耦合的 delta 频率,这可能是一个重要的同步部位。了解非发作状态下的节律组织可以提供有关与发作发生和发作传播有关的网络连接的见解。