Adamu Aliyu, Abdul Wahab Roswanira, Aliyu Firdausi, Abdul Razak Fazira Ilyana, Mienda Bashir Sajo, Shamsir Mohd Shahir, Huyop Fahrul
Department of Biosciences, Faculty Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia; Department of Microbiology, Faculty of Science, Kaduna State University, Tafawa Balewa way, Kaduna, PMB 2339, Nigeria.
Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, 81310, Johor, Malaysia.
J Mol Graph Model. 2019 Nov;92:131-139. doi: 10.1016/j.jmgm.2019.07.012. Epub 2019 Jul 21.
Dehalogenases continue to garner interest of the scientific community due to their potential applications in bioremediation of halogen-contaminated environment and in synthesis of various industrially relevant products. Example of such enzymes is DehL, an L-2-haloacid dehalogenase (EC 3.8.1.2) from Rhizobium sp. RC1 that catalyses the specific cleavage of halide ion from L-2-halocarboxylic acids to produce the corresponding D-2-hydroxycarboxylic acids. Recently, the catalytic residues of DehL have been identified and its catalytic mechanism has been fully elucidated. However, the enantiospecificity determinants of the enzyme remain unclear. This information alongside a well-defined catalytic mechanism are required for rational engineering of DehL for substrate enantiospecificity. Therefore, using quantum mechanics/molecular mechanics and molecular mechanics Poisson-Boltzmann surface area calculations, the current study theoretically investigated the molecular basis of DehL enantiospecificity. The study found that R51L mutation cancelled out the dehalogenation activity of DehL towards it natural substrate, L-2-chloropropionate. The M48R mutation, however introduced a new activity towards D-2-chloropropionate, conveying the possibility of inverting the enantiospecificity of DehL from L-to d-enantiomer with a minimum of two simultaneous mutations. The findings presented here will play important role in the rational design of DehL dehalogenase for improving substrate utility.
由于脱卤酶在卤代污染环境的生物修复以及各种工业相关产品的合成中具有潜在应用,因此它们一直吸引着科学界的关注。这类酶的一个例子是DehL,它是一种来自根瘤菌属RC1的L-2-卤酸脱卤酶(EC 3.8.1.2),催化从L-2-卤代羧酸中特异性裂解卤离子,生成相应的D-2-羟基羧酸。最近,DehL的催化残基已被确定,其催化机制也已得到充分阐明。然而,该酶的对映体特异性决定因素仍不清楚。为了对DehL进行底物对映体特异性的合理工程改造,除了明确的催化机制外,还需要这一信息。因此,本研究利用量子力学/分子力学和分子力学泊松-玻尔兹曼表面积计算,从理论上研究了DehL对映体特异性的分子基础。研究发现,R51L突变消除了DehL对其天然底物L-2-氯丙酸酯的脱卤活性。然而,M48R突变引入了对D-2-氯丙酸酯的新活性,这表明通过最少两个同时发生的突变就有可能将DehL的对映体特异性从L-对映体转变为D-对映体。本文的研究结果将在合理设计DehL脱卤酶以提高底物利用率方面发挥重要作用。