Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
Water Res. 2019 Oct 15;163:114882. doi: 10.1016/j.watres.2019.114882. Epub 2019 Jul 17.
The ability of anaerobic digestion (AD) to eliminate organophosphorus model compounds (OPs) with structural elements of phosphate, phosphorothioate and phosphorodithioate esters was studied. The enzymatic mechanism of the first irreversible degradation reaction was characterized using metabolite pattern and kinetic H/C-isotope effect in original, cell-free and heat sterilized biogas slurry. The isotope fractionation study suggests different modes of degradation reactions. Representatives for phosphate ester, tris(2-chloroethyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate, were hydrolyzed in biogas slurry without carbon or hydrogen isotope fractionation. Representatives for phosphorodithioate, Dimethoate and Malathion, were degraded in original slurry yielding carbon enrichment factor (ε) of -0.6 ± 0.1‰ and -5.5 ± 0.1‰ (-0.9 ± 0.1‰ and -7.2 ± 0.5‰ in cell-free slurry), without hydrogen isotope fractionation. Phosphorothioate degradation represented by Parathion and Parathion-methyl yielded surprisingly different ε (-0.7 ± 0.2 and -3.6 ± 0.4‰) and ε (-33 ± 5 and -5 ± 1‰) in original slurry compared to cell-free slurry (ε = -2.5 ± 0.5 and -8.6 ± 1.4‰; ε = -61 ± 10 and -10 ± 3‰) suggesting H-C bond cleavage. Degradation of Parathion and Parathion-methyl in sterilized slurry gave carbon but not hydrogen fractionation implying relative thermostable enzymatic activity with different mechanism. The correlation of H and C stable isotope fractionation of Parathion in biogas slurry showed distinct pattern (Λ = 31 ± 11, Λ = 20 ± 2), indicating different mechanism from chemical hydrolysis. Overall, AD can be a potential treatment for OPs contaminated biomass or contaminated organic waste material.
研究了厌氧消化(AD)消除具有磷酸盐、硫代磷酸酯和二硫代磷酸酯酯结构元素的有机磷模型化合物(OPs)的能力。使用代谢物模式和原始、无细胞和热灭菌沼气浆中的动力学 H/C-同位素效应,对第一个不可逆降解反应的酶促机制进行了特征描述。同位素分馏研究表明了不同的降解反应模式。磷酸酯的代表物,三(2-氯乙基)磷酸酯和三(1,3-二氯-2-丙基)磷酸酯,在没有碳或氢同位素分馏的沼气浆中被水解。二硫代磷酸酯的代表物,乐果和马拉硫磷,在原始浆中降解,产生碳富集因子(ε)为-0.6±0.1‰和-5.5±0.1‰(无细胞浆中为-0.9±0.1‰和-7.2±0.5‰),没有氢同位素分馏。以对硫磷和对硫磷-甲基为代表的硫代磷酸酯的降解,令人惊讶地产生了不同的 ε(原始浆中为-0.7±0.2 和-3.6±0.4‰,无细胞浆中为-2.5±0.5 和-8.6±1.4‰)和 ε(原始浆中为-33±5 和-5±1‰,无细胞浆中为-61±10 和-10±3‰),表明 H-C 键断裂。灭菌浆中对硫磷和对硫磷-甲基的降解只产生碳的同位素分馏而没有氢的同位素分馏,这意味着具有不同机制的相对热稳定酶活性。沼气浆中对硫磷的 H 和 C 稳定同位素分馏的相关性显示出明显的模式(Λ=31±11,Λ=20±2),表明与化学水解不同的机制。总的来说,AD 可以是处理 OPs 污染生物质或污染有机废物的潜在方法。