Suppr超能文献

频率尺度对皮层神经元对1/f输入信号的响应敏感性和可靠性的影响。

The Impact of Frequency Scale on the Response Sensitivity and Reliability of Cortical Neurons to 1/f Input Signals.

作者信息

Qu Guojie, Fan Boqiang, Fu Xin, Yu Yuguo

机构信息

State Key Laboratory of Medical Neurobiology, School of Life Science, Human Phenome Institute, Institute of Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.

出版信息

Front Cell Neurosci. 2019 Jul 11;13:311. doi: 10.3389/fncel.2019.00311. eCollection 2019.

Abstract

What type of principle features intrinsic inside of the fluctuated input signals could drive neurons with the maximal excitations is one of the crucial neural coding issues. In this article, we examined both experimentally and theoretically the cortical neuronal responsivity (including firing rate and spike timing reliability) to input signals with different intrinsic correlational statistics (e.g., white-type noise, showed 1/f power spectrum, pink noise 1/f, and brown noises 1/f) and different frequency ranges. Our results revealed that the response sensitivity and reliability of cortical neurons is much higher in response to 1/f noise stimuli with long-term correlations than 1/f with short-term correlations for a broad frequency range, and also higher than 1/f for all frequency ranges. In addition, we found that neuronal sensitivity diverges to opposite directions for 1/f noise comparing with 1/f white noise as a function of cutoff frequency of input signal. As the cutoff frequency is progressively increased from 50 to 1,000 Hz, the neuronal responsiveness increased gradually for 1/f noise, while decreased exponentially for white noise. Computational simulations of a general cortical model revealed that, neuronal sensitivity and reliability to input signal statistics was majorly dominated by fast sodium inactivation, potassium activation, and membrane time constants.

摘要

在波动的输入信号中,何种类型的内在特征能够驱动神经元产生最大兴奋,这是神经编码的关键问题之一。在本文中,我们通过实验和理论研究了皮质神经元对具有不同内在相关统计特性(例如,白噪声型、呈现1/f功率谱的粉红噪声、1/f的棕色噪声)以及不同频率范围的输入信号的反应性(包括放电率和放电时间可靠性)。我们的结果表明,在较宽频率范围内,皮质神经元对具有长期相关性的1/f噪声刺激的反应敏感性和可靠性远高于具有短期相关性的1/f噪声,并且在所有频率范围内也高于白噪声。此外,我们发现,作为输入信号截止频率的函数,与白噪声相比,1/f噪声的神经元敏感性在相反方向上存在差异。随着截止频率从50Hz逐渐增加到1000Hz,1/f噪声的神经元反应性逐渐增加,而白噪声的神经元反应性则呈指数下降。一个通用皮质模型的计算模拟表明,神经元对输入信号统计特性的敏感性和可靠性主要由快速钠失活、钾激活和膜时间常数决定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ad8/6637762/01189f652a35/fncel-13-00311-g0001.jpg

相似文献

1
The Impact of Frequency Scale on the Response Sensitivity and Reliability of Cortical Neurons to 1/f Input Signals.
Front Cell Neurosci. 2019 Jul 11;13:311. doi: 10.3389/fncel.2019.00311. eCollection 2019.
2
Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin-Huxley channels.
J Theor Biol. 2009 Nov 7;261(1):83-92. doi: 10.1016/j.jtbi.2009.07.006. Epub 2009 Jul 15.
3
Influence of ionic conductances on spike timing reliability of cortical neurons for suprathreshold rhythmic inputs.
J Neurophysiol. 2004 Jan;91(1):194-205. doi: 10.1152/jn.00556.2003. Epub 2003 Sep 24.
4
Chaos-induced modulation of reliability boosts output firing rate in downstream cortical areas.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Mar;69(3 Pt 1):031912. doi: 10.1103/PhysRevE.69.031912. Epub 2004 Mar 31.
5
The domain of neuronal firing on a plane of input current and conductance.
J Comput Neurosci. 2015 Oct;39(2):217-33. doi: 10.1007/s10827-015-0573-5. Epub 2015 Aug 18.
6
Fast oscillations trigger bursts of action potentials in neocortical neurons in vitro: a quasi-white-noise analysis study.
Brain Res. 2006 Sep 19;1110(1):201-10. doi: 10.1016/j.brainres.2006.06.097. Epub 2006 Jul 31.
7
Noisy Juxtacellular Stimulation In Vivo Leads to Reliable Spiking and Reveals High-Frequency Coding in Single Neurons.
J Neurosci. 2016 Oct 26;36(43):11120-11132. doi: 10.1523/JNEUROSCI.0787-16.2016.
8
Theory of input spike auto- and cross-correlations and their effect on the response of spiking neurons.
Neural Comput. 2008 Jul;20(7):1651-705. doi: 10.1162/neco.2008.03-07-497.
10
Statistical structure of neural spiking under non-Poissonian or other non-white stimulation.
J Comput Neurosci. 2015 Aug;39(1):29-51. doi: 10.1007/s10827-015-0560-x. Epub 2015 May 5.

引用本文的文献

2
1/f laws found in non-human music.
Sci Rep. 2023 Jan 24;13(1):1324. doi: 10.1038/s41598-023-28444-z.
3
It's in the Timing: Reduced Temporal Precision in Neural Activity of Schizophrenia.
Cereb Cortex. 2022 Aug 3;32(16):3441-3456. doi: 10.1093/cercor/bhab425.
5
Stochastic Resonance Reduces Sway and Gait Variability in Individuals With Unilateral Transtibial Amputation: A Pilot Study.
Front Physiol. 2020 Oct 19;11:573700. doi: 10.3389/fphys.2020.573700. eCollection 2020.

本文引用的文献

1
An Interneuron Circuit Reproducing Essential Spectral Features of Field Potentials.
Neural Comput. 2018 May;30(5):1296-1322. doi: 10.1162/NECO_a_01068. Epub 2018 Mar 22.
3
Weak electric fields detectability in a noisy neural network.
Cogn Neurodyn. 2017 Feb;11(1):81-90. doi: 10.1007/s11571-016-9409-x. Epub 2016 Sep 12.
4
Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue.
PLoS Comput Biol. 2016 Nov 7;12(11):e1005193. doi: 10.1371/journal.pcbi.1005193. eCollection 2016 Nov.
6
Age-Related Changes in 1/f Neural Electrophysiological Noise.
J Neurosci. 2015 Sep 23;35(38):13257-65. doi: 10.1523/JNEUROSCI.2332-14.2015.
7
Cortical Membrane Potential Signature of Optimal States for Sensory Signal Detection.
Neuron. 2015 Jul 1;87(1):179-92. doi: 10.1016/j.neuron.2015.05.038. Epub 2015 Jun 11.
8
Neuronal morphology generates high-frequency firing resonance.
J Neurosci. 2015 May 6;35(18):7056-68. doi: 10.1523/JNEUROSCI.3924-14.2015.
9
Statistical structure of neural spiking under non-Poissonian or other non-white stimulation.
J Comput Neurosci. 2015 Aug;39(1):29-51. doi: 10.1007/s10827-015-0560-x. Epub 2015 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验