Suppr超能文献

脑血流速度波形中脉搏起点的识别:一项对比研究。

Identification of Pulse Onset on Cerebral Blood Flow Velocity Waveforms: A Comparative Study.

机构信息

Department of Biomedical Engineering, California State University, Long Beach, CA 90840, USA.

Department of Computer Engineering and Computer Science, California State University, Long Beach, CA 90840, USA.

出版信息

Biomed Res Int. 2019 Jul 2;2019:3252178. doi: 10.1155/2019/3252178. eCollection 2019.

Abstract

The low cost, simple, noninvasive, and continuous measurement of cerebral blood flow velocity (CBFV) by transcranial Doppler is becoming a common clinical tool for the assessment of cerebral hemodynamics. CBFV monitoring can also help with noninvasive estimation of intracranial pressure and evaluation of mild traumatic brain injury. Reliable CBFV waveform analysis depends heavily on its accurate beat-to-beat delineation. However, CBFV is inherently contaminated with various types of noise/artifacts and has a wide range of possible pathological waveform morphologies. Thus, pulse onset detection is in general a challenging task for CBFV signal. In this paper, we conducted a comprehensive comparative analysis of three popular pulse onset detection methods using a large annotated dataset of 92,794 CBFV pulses-collected from 108 subarachnoid hemorrhage patients admitted to UCLA Medical Center. We compared these methods not only in terms of their accuracy and computational complexity, but also for their sensitivity to the selection of their parameters' values. The results of this comprehensive study revealed that using optimal values of the parameters obtained from sensitivity analysis, one method can achieve the highest accuracy for CBFV pulse onset detection with true positive rate (TPR) of 97.06% and positive predictivity value (PPV) of 96.48%, when error threshold is set to just less than 10 ms. We conclude that the high accuracy and low computational complexity of this method (average running time of 4ms/pulse) makes it a reliable algorithm for CBFV pulse onset detection.

摘要

经颅多普勒(TCD)以较低的成本、简单的操作、非侵入式的方式和连续测量脑血流速度(CBFV),使其成为评估脑血流动力学的常用临床工具。CBFV 监测还可以帮助无创估计颅内压和评估轻度创伤性脑损伤。可靠的 CBFV 波形分析在很大程度上依赖于其准确的逐拍描绘。然而,CBFV 本身受到各种类型的噪声/伪影的污染,并且可能具有广泛的病理波形形态。因此,脉搏起始检测通常是 CBFV 信号的一项具有挑战性的任务。在本文中,我们使用从加利福尼亚大学洛杉矶分校医疗中心收治的 108 例蛛网膜下腔出血患者中收集的 92794 个 CBFV 脉冲的大型注释数据集,对三种流行的脉搏起始检测方法进行了全面的比较分析。我们不仅比较了这些方法的准确性和计算复杂性,还比较了它们对参数值选择的敏感性。这项全面研究的结果表明,使用灵敏度分析获得的最佳参数值,当误差阈值设置为略小于 10ms 时,一种方法可以实现最高的 CBFV 脉搏起始检测准确率,真阳性率(TPR)为 97.06%,阳性预测值(PPV)为 96.48%。我们得出结论,该方法具有高精度和低计算复杂度(平均每个脉冲运行时间为 4ms)的特点,使其成为 CBFV 脉搏起始检测的可靠算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验