Suppr超能文献

采用获益-风险分析方法捕捉监管决策:肾细胞癌。

Using a Benefit-Risk Analysis Approach to Capture Regulatory Decision Making: Renal Cell Carcinoma.

机构信息

Light Pharma, Inc., Cambridge, Massachusetts, USA.

Manufacturing Engineering, Brigham Young University, Provo, Utah, USA.

出版信息

Clin Pharmacol Ther. 2020 Mar;107(3):495-506. doi: 10.1002/cpt.1589. Epub 2019 Sep 27.

Abstract

Drug regulators such as the US Food and Drug Administration (FDA) make decisions about drug approvals based on benefit-risk analysis. In this work, a quantitative benefit-risk analysis approach captures regulatory decision making about new drugs to treat renal cell carcinoma (RCC). Fifteen FDA decisions on RCC drugs based on clinical trials whose results were published from 2005 to 2018 were identified and analyzed. The benefits and risks of the new drug in each clinical trial were quantified relative to comparators (typically the control arm of the same clinical trial) to estimate whether the benefit-risk was positive or negative. A sensitivity analysis was demonstrated using pazopanib to explore the magnitude of uncertainty. FDA approval decision outcomes for the clinical trials assessed were consistent and logical using this benefit-risk framework.

摘要

药品监管机构(如美国食品药品监督管理局(FDA))基于获益-风险分析来做出药品批准的决策。在这项工作中,一种定量的获益-风险分析方法用于捕捉有关治疗肾细胞癌(RCC)的新药的监管决策。确定并分析了 15 项基于临床试验的 FDA 关于 RCC 药物的决策,这些临床试验的结果于 2005 年至 2018 年公布。相对于对照物(通常是同一项临床试验的对照组),对每个临床试验中的新药的获益和风险进行量化,以评估获益-风险是阳性还是阴性。使用帕唑帕尼进行敏感性分析,以探索不确定性的大小。使用这种获益-风险框架,对评估的临床试验的 FDA 批准决策结果是一致和合理的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验