Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States.
J Chem Inf Model. 2019 Aug 26;59(8):3474-3484. doi: 10.1021/acs.jcim.9b00432. Epub 2019 Aug 12.
Accurate prediction of protein-ligand binding affinities and their quantitative decomposition into residue-specific contributions represent challenging problems in drug discovery. While quantum mechanical (QM) methods can provide an accurate description of such interactions, the associated computational cost is normally prohibitive for broad-based applications. Recently, we have shown that QM-based protein-ligand interaction energies in the gas phase can be determined accurately using our multilayer molecules-in-molecules (MIM) fragmentation-based method at a significantly lower computational cost. In this paper, we present a new approach for calculating protein-ligand interactions using our three-layer model (MIM3) that allows us to decompose the total binding affinity into quantitative contributions from individual residues (or backbone and side chain), crystal water molecules, solvation energy, and entropy. In our approach, the desolvation energy and entropy changes during protein-ligand binding are modeled using simple and inexpensive empirical models while intermolecular interactions are computed using an accurate QM method. The performance of our approach has been assessed on a congeneric series of 22 thrombin inhibitors, all with experimentally known binding affinities, using a binding pocket cutout of 120 residues with more than 1550 atoms. Comparison of our MIM3-calculated binding affinities calculated at the B97-D3BJ/6-311++G(2d,2p) level with experiment shows a good correlation with an range of 0.81-0.88 and a Spearman rank correlation coefficient (ρ) range of 0.84-0.89 while providing a quantitative description of residue-specific interactions. We show that such residue-specific interaction energies can be employed to identify and rationalize both obvious (e.g., hydrogen bonds, π···π) and nonobvious (e.g., CH···π) interactions that play a critical role in protein-ligand binding. We suggest that such quantitative information can be used to identify the key residues that determine the comparative binding affinities of different ligands in order to improve and optimize the effectiveness of computational drug design.
准确预测蛋白质-配体结合亲和力及其定量分解为残基特异性贡献是药物发现中的挑战性问题。虽然量子力学(QM)方法可以提供对这些相互作用的准确描述,但相关的计算成本通常对广泛应用来说是不可行的。最近,我们已经表明,使用我们的基于多层分子-分子(MIM)片段化的方法,可以在显著降低计算成本的情况下准确确定气相中基于 QM 的蛋白质-配体相互作用能。在本文中,我们提出了一种使用我们的三层模型(MIM3)计算蛋白质-配体相互作用的新方法,该方法允许我们将总结合亲和力分解为来自单个残基(或主链和侧链)、晶体水分子、溶剂化能和熵的定量贡献。在我们的方法中,使用简单且廉价的经验模型来模拟蛋白质-配体结合过程中的去溶剂化能和熵变化,而分子间相互作用则使用准确的 QM 方法计算。我们的方法的性能已经在一个具有 22 个凝血酶抑制剂的同类系列中进行了评估,所有这些抑制剂都具有实验已知的结合亲和力,使用一个包含 120 个残基和超过 1550 个原子的结合口袋切割。我们将 MIM3 计算的结合亲和力与实验结果进行比较,B97-D3BJ/6-311++G(2d,2p) 水平的相关系数为 0.81-0.88,Spearman 秩相关系数(ρ)为 0.84-0.89,同时提供了残基特异性相互作用的定量描述。我们表明,这种残基特异性相互作用能可用于识别和合理化明显(例如氢键、π···π)和非明显(例如 CH···π)相互作用,这些相互作用在蛋白质-配体结合中起着关键作用。我们建议,这种定量信息可用于识别决定不同配体相对结合亲和力的关键残基,以提高和优化计算药物设计的效果。