Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, Rosario S2002LRK, Argentina.
Área Análisis de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Argentina.
Int J Mol Sci. 2019 Jul 27;20(15):3686. doi: 10.3390/ijms20153686.
Among different Candida species triggering vaginal candidiasis, is the most predominant yeast. It is commonly treated using azole drugs such as Tioconazole (TIO) and Econazole (ECO). However, their low water solubility may affect their therapeutic efficiency. Therefore, the aim of this research was to produce a novel chitosan nanocapsule based delivery system comprising of TIO or ECO and to study their suitability in vaginal application. These systems were characterized by their physicochemical properties, encapsulation efficiency, in vitro release, storage stability, cytotoxicity, and in vitro biological activity. Both nanocapsules loaded with TIO (average hydrodynamic size of 146.8 ± 0.8 nm, zeta potential of +24.7 ± 1.1 mV) or ECO (average hydrodynamic size of 127.1 ± 1.5 nm, zeta potential of +33.0 ± 1.0 mV) showed excellent association efficiency (99% for TIO and 87% for ECO). The analysis of size, polydispersity index, and zeta potential of the systems at 4, 25, and 37 °C (over a period of two months) showed the stability of the systems. Finally, the developed nanosystems presented fungicidal activity against at non-toxic concentrations (studied on model human skin cells). The results obtained from this study are the first step in the development of a pharmaceutical dosage form suitable for the treatment of vaginal candidiasis.
在引发阴道念珠菌病的不同念珠菌物种中,白色念珠菌是最主要的酵母。它通常用唑类药物治疗,如噻康唑(TIO)和益康唑(ECO)。然而,它们的低水溶性可能会影响它们的治疗效果。因此,本研究的目的是制备一种新型的壳聚糖纳米胶囊给药系统,包含 TIO 或 ECO,并研究其在阴道应用中的适用性。这些系统的特点是其物理化学性质、包封效率、体外释放、储存稳定性、细胞毒性和体外生物活性。载有 TIO(平均水动力粒径为 146.8 ± 0.8nm,zeta 电位为+24.7 ± 1.1mV)或 ECO(平均水动力粒径为 127.1 ± 1.5nm,zeta 电位为+33.0 ± 1.0mV)的纳米胶囊均表现出优异的结合效率(TIO 为 99%,ECO 为 87%)。在 4、25 和 37°C 下(两个月内)对系统的粒径、多分散指数和 zeta 电位进行分析,表明系统的稳定性。最后,开发的纳米系统在非毒性浓度下对白色念珠菌表现出杀菌活性(在模型人皮肤细胞上进行研究)。本研究的结果是开发适合阴道念珠菌病治疗的药物剂型的第一步。