Kurita Hiroki, Suzuki Shiori, Kikuchi Shoichi, Yodoshi Noriharu, Gourdet Sophie, Narita Fumio
Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.
Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561, Japan.
Materials (Basel). 2019 Jul 28;12(15):2401. doi: 10.3390/ma12152401.
We fabricated fully dense titanium boride (TiB) whisker-reinforced Ti-6Al-4V alloy matrix (Ti6Al4V-TiB) composites, with a homogeneous dispersion, a TiB orientation perpendicular to the loading direction (; two-dimensional random direction) and an intimate Ti/TiB interface without an intermediate interfacial layer in the Ti-6Al-4V alloy matrix, by spark plasma sintering. Microstructural analysis allows us to present the tensile properties of the Ti6Al4V-TiB composites with the theories for discontinuous fiber-reinforced composites. The Ti6Al4V-TiB 10 vol.% composite yielded a Young's modulus of 130 GPa, an ultimate tensile strength (UTS) of 1193 MPa and an elongation of 2.8%. The obtained experimental Young's modulus and UTS of the Ti6Al4V-TiB composites were consistent with the theoretical values estimated by the Halpin-Tsai and Shear-lag models. The good agreement between our experimental results and these models indicates that the TiB whiskers behave as discontinuous fibers in the Ti-6Al-4V alloy matrix.
我们通过放电等离子烧结制备了完全致密的硼化钛(TiB)晶须增强Ti-6Al-4V合金基(Ti6Al4V-TiB)复合材料,其具有均匀的分散性、TiB取向垂直于加载方向(二维随机方向)以及Ti-6Al-4V合金基体中没有中间界面层的紧密Ti/TiB界面。微观结构分析使我们能够用不连续纤维增强复合材料的理论来阐述Ti6Al4V-TiB复合材料的拉伸性能。10体积%的Ti6Al4V-TiB复合材料的杨氏模量为130 GPa,极限抗拉强度(UTS)为1193 MPa,伸长率为2.8%。Ti6Al4V-TiB复合材料获得的实验杨氏模量和UTS与通过Halpin-Tsai模型和剪滞模型估算的理论值一致。我们的实验结果与这些模型之间的良好一致性表明,TiB晶须在Ti-6Al-4V合金基体中表现为不连续纤维。