Suppr超能文献

利用分类回归树模型预测开放性眼球损伤的视力预后:莫拉达巴德眼部创伤研究。

Predicting visual outcome after open globe injury using classification and regression tree model: the Moradabad ocular trauma study.

机构信息

C L Gupta Eye Institute, Ram Ganga Vihar, Phase 2, Moradabad, India..

C L Gupta Eye Institute, Ram Ganga Vihar, Phase 2, Moradabad, India.

出版信息

Can J Ophthalmol. 2019 Aug;54(4):473-478. doi: 10.1016/j.jcjo.2018.08.004. Epub 2018 Oct 19.

Abstract

OBJECTIVE

This study was conducted to identify factors associated with visual outcome in patients with open globe injuries (OGIs).

DESIGN

Retrospective case series of OGIs presenting to a tertiary eye care institute in North India from October 2009 to December 2016.

METHODS

A total of 157 patients with open globe injury have been included in the study. Multivariate analysis to ascertain the effects of different identified variables on the likelihood of poor visual outcome was done using binomial logistic regression. "Visual survival" (counting fingers or better) versus "minimal/no vision" (hand motion, light perception, and no light perception) was predicted using the classification and regression tree (CART) model. Main outcome measures were visual outcomes, risk factors, and rates of postoperative complications.

RESULTS

Univariate analysis determined 9 predictors associated with poor visual outcome. Out of these, presence of relative afferent pupillary defect (RAPD), poor presenting visual acuity, presence of adnexal injuries, and location of injuries were the most significant predictors of vision loss. Absence of RAPD led to 79% chance of vision survival. Sixty-eight percent of patients with RAPD and initial visual acuity (VA) of less than 6/60 resulted in poor vision.

CONCLUSION

The CART model is useful in predicting final VA based on some prognostic factors present initially.

摘要

目的

本研究旨在确定与开放性眼球损伤(OGI)患者的视觉预后相关的因素。

设计

对 2009 年 10 月至 2016 年 12 月在印度北部一家三级眼科医疗机构就诊的开放性眼球损伤患者进行回顾性病例系列研究。

方法

共纳入 157 例开放性眼球损伤患者。采用二项逻辑回归分析确定不同识别变量对不良视觉预后的可能性的影响。使用分类回归树(CART)模型预测“视觉生存”(指数或更好)与“最小/无视力”(手动运动、光感和无光感)。主要观察指标为视觉结果、危险因素和术后并发症发生率。

结果

单因素分析确定了 9 个与不良视觉预后相关的预测因子。其中,相对性传入性瞳孔障碍(RAPD)、较差的初始视力、附属器损伤和损伤位置是视力丧失的最显著预测因子。无 RAPD 导致 79%的视力生存机会。68%的 RAPD 患者和初始视力(VA)低于 6/60 导致视力不佳。

结论

CART 模型可根据初始存在的一些预后因素预测最终的 VA。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验