Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California
Drug Metabolism & Pharmacokinetics (D.Z., Y.M., D.S., W.W., S.C.K., C.E.C.A.H.), Discovery Chemistry (P.S.D., T.H.P.), Translational Oncology (S.-F.Y., A.P.), and Protein Chemistry (J.D.S.), Genentech, South San Francisco, California.
Drug Metab Dispos. 2019 Oct;47(10):1146-1155. doi: 10.1124/dmd.119.087023. Epub 2019 Jul 29.
Antibody-drug conjugates (ADCs) contain a disease-receptor antibody and a payload drug connected via a linker. The payload delivery depends on both tumor properties and ADC characteristics. In this study, we used different linkers, attachment sites, and doses to modulate payload delivery of several ADCs bearing maytansinoids (e.g., DM1), auristatins (e.g., MMAE), and DNA alkylating agents [e.g., pyrrolo[2,1-c][1,4]benzodiazepine-dimer (PBD)] as payloads in HER2- or CD22-expressing xenograft models. The tumor growth inhibition and ADC stability and exposure data were collected and analyzed from these dosed animals. The trend analysis suggests that intratumoral payload exposures that directly related the combination of conjugate linker and dose correlate with the corresponding efficacies of three payload types in two antigen-expressing xenograft models. These preliminary correlations also suggest that a minimal threshold concentration of intratumoral payload is required to support sustained efficacy. In addition, an ADC can deliver an excessive level of payload to tumors that does not enhance efficacy ("Plateau" effect). In contrast to tumor payload concentrations, the assessments of systemic exposures of total antibody (Tab) as well as the linker, dose, site of attachment, plasma stability, and drug-to-antibody ratio changes of these ADCs did not consistently rationalize the observed ADC efficacies. The requirement of a threshold payload concentration for efficacy is further supported by dose fractionation studies with DM1-, MMAE-, and PBD-containing ADCs, which demonstrated that single-dose regimens showed better efficacies than fractionated dosing. Overall, this study demonstrates that 1) the linker and dose together determine the tissue payload concentration that correlates with the antitumor efficacy of ADCs and 2) an ADC can deliver an unnecessary level of payload to tumors in xenograft models.
抗体药物偶联物(ADCs)包含一个疾病受体抗体和一个通过连接子连接的有效载荷药物。有效载荷的传递取决于肿瘤特性和 ADC 的特性。在这项研究中,我们使用了不同的连接子、连接点和剂量来调节几种携带美坦辛(例如 DM1)、auristatins(例如 MMAE)和 DNA 烷化剂(例如吡咯并[2,1-c][1,4]苯并二氮杂卓二聚体(PBD))作为有效载荷的 ADC 的有效载荷传递,这些 ADC 带有 HER2 或 CD22 表达的异种移植模型。从这些给药动物中收集和分析肿瘤生长抑制和 ADC 稳定性和暴露数据。趋势分析表明,与缀合物连接子和剂量直接相关的肿瘤内有效载荷暴露与两种抗原表达异种移植模型中三种有效载荷类型的相应疗效相关。这些初步相关性还表明,肿瘤内有效载荷需要达到最小阈值浓度才能支持持续疗效。此外,ADC 可以向肿瘤输送过多的有效载荷,而不会增强疗效(“平台”效应)。与肿瘤有效载荷浓度相比,这些 ADC 的总抗体(Tab)以及连接子、剂量、连接点、血浆稳定性和药物抗体比变化的系统暴露评估并不能始终合理化观察到的 ADC 疗效。用含有 DM1、MMAE 和 PBD 的 ADC 进行剂量分割研究进一步支持了疗效需要有效载荷浓度阈值的观点,这些研究表明,单剂量方案比分割剂量方案显示出更好的疗效。总体而言,这项研究表明:1)连接子和剂量共同决定了与 ADC 抗肿瘤疗效相关的组织有效载荷浓度,2)ADC 可以向异种移植模型中的肿瘤输送不必要的有效载荷水平。