Istanbul Medipol University, The School of Engineering and Natural Sciences, Department of Biomedical Engineering, Istanbul, 34810, Turkey.
Istanbul Medipol University, The School of Engineering and Natural Sciences, Department of Computer Engineering, Istanbul, 34810, Turkey.
Sci Rep. 2019 Jul 29;9(1):10967. doi: 10.1038/s41598-019-47481-1.
RAS mutants have been extensively studied as they are associated with development of cancer; however, H-RAS mutant has remained untouched since it does not lead to transformation in the cell. To the best of our knowledge, this is the first study where structural/dynamical properties of H-RAS have been investigated -in comparison to H-RAS, H-RAS, RAF-RBD-bound and GAP-bound H-RAS- using molecular dynamics simulations (total of 9 μs). We observed remarkable differences in dynamics of Y32. Specifically, it is located far from the nucleotide binding pocket in the catalytically-active GAP-bound H-RAS, whereas it makes close interaction with the nucleotide in signaling-active systems (H-RAS, KRAS4B, RAF-RBD-bound H-RAS) and H-RAS. The accessibility of Y32 in wild type protein is achieved upon GAP binding. Interestingly; however, it is intrinsically accessible in H-RAS. Considering the fact that incomplete opening of Y32 is associated with cancer, we propose that Y32 can be targeted by means of small therapeutics that can displace it from the nucleotide binding site, thus introducing intrinsic GTPase activity to RAS mutants, which cannot bind to GAP. Therefore, mimicking properties of H-RAS in RAS-centered drug discovery studies has the potential of improving success rates since it acts as a molecular switch per se.
RAS 突变体已被广泛研究,因为它们与癌症的发展有关;然而,由于 H-RAS 突变体不会导致细胞转化,因此它一直未被触及。据我们所知,这是第一项研究 H-RAS 的结构/动力学特性的研究——与 H-RAS、H-RAS、RAF-RBD 结合的 H-RAS 和 GAP 结合的 H-RAS 相比——使用分子动力学模拟(总计 9μs)。我们观察到 Y32 动力学的显著差异。具体来说,它位于催化活性 GAP 结合的 H-RAS 远离核苷酸结合口袋的位置,而在信号活性系统(H-RAS、KRAS4B、RAF-RBD 结合的 H-RAS)和 H-RAS 中与核苷酸密切相互作用。野生型蛋白中 Y32 的可及性是通过 GAP 结合实现的。有趣的是;然而,它在 H-RAS 中是固有可及的。考虑到不完全打开 Y32 与癌症有关,我们提出 Y32 可以通过小分子治疗来靶向,从而将其从核苷酸结合位点置换出来,从而为不能与 GAP 结合的 RAS 突变体引入内在的 GTP 酶活性。因此,在以 RAS 为中心的药物发现研究中模拟 H-RAS 的特性有可能提高成功率,因为它本身就是一种分子开关。