Department of Radiology, Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland.
Department of Medical Physics, Turku University Hospital, Kiinamyllynkatu 4-8, 20521, Turku, Finland.
Sci Rep. 2019 Jul 29;9(1):10907. doi: 10.1038/s41598-019-47484-y.
The study aim was to utilise multiple feature selection methods in order to select the most important parameters from clinical patient data for high-intensity focused ultrasound (HIFU) treatment outcome classification in uterine fibroids. The study was retrospective using patient data from 66 HIFU treatments with 89 uterine fibroids. A total of 39 features were extracted from the patient data and 14 different filter-based feature selection methods were used to select the most informative features. The selected features were then used in a support vector classification (SVC) model to evaluate the performance of these parameters in predicting HIFU therapy outcome. The therapy outcome was defined as non-perfused volume (NPV) ratio in three classes: <30%, 30-80% or >80%. The ten most highly ranked features in order were: fibroid diameter, subcutaneous fat thickness, fibroid volume, fibroid distance, Funaki type I, fundus location, gravidity, Funaki type III, submucosal fibroid type and urinary symptoms. The maximum F1-micro classification score was 0.63 using the top ten features from Mutual Information Maximisation (MIM) and Joint Mutual Information (JMI) feature selection methods. Classification performance of HIFU therapy outcome prediction in uterine fibroids is highly dependent on the chosen feature set which should be determined prior using different classifiers.
本研究旨在利用多种特征选择方法,从临床患者数据中选择高强度聚焦超声(HIFU)治疗子宫肌瘤疗效分类的最重要参数。该研究采用回顾性方法,使用了 66 例 HIFU 治疗 89 个子宫肌瘤的患者数据。从患者数据中提取了 39 个特征,并使用了 14 种不同的基于过滤的特征选择方法来选择最具信息量的特征。然后,选择的特征被用于支持向量分类(SVC)模型,以评估这些参数在预测 HIFU 治疗效果中的性能。治疗效果定义为未灌注体积(NPV)比分为三个等级:<30%、30-80%或>80%。按重要性排名前十的特征分别为:肌瘤直径、皮下脂肪厚度、肌瘤体积、肌瘤距离、Funaki Ⅰ型、宫底位置、孕次、Funaki Ⅲ型、黏膜下肌瘤类型和尿症状。使用 Mutual Information Maximisation(MIM)和 Joint Mutual Information(JMI)特征选择方法中排名前十的特征,最大 F1-微分类评分达到 0.63。子宫肌瘤 HIFU 治疗效果预测的分类性能高度依赖于所选特征集,应使用不同的分类器预先确定。