Suppr超能文献

用于可充电电池的卤化物基材料与化学

Halide-Based Materials and Chemistry for Rechargeable Batteries.

作者信息

Zhao Xiangyu, Zhao-Karger Zhirong, Fichtner Maximilian, Shen Xiaodong

机构信息

State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.

Helmholtz Institute Ulm (HIU), Electrochemical Energy Storage, Helmholtzstrasse 11, 89081, Ulm, Germany.

出版信息

Angew Chem Int Ed Engl. 2020 Apr 6;59(15):5902-5949. doi: 10.1002/anie.201902842. Epub 2020 Jan 9.

Abstract

Rechargeable batteries are considered one of the most effective energy storage technologies to bridge the production and consumption of renewable energy. The further development of rechargeable batteries with characteristics such as high energy density, low cost, safety, and a long cycle life is required to meet the ever-increasing energy-storage demands. This Review highlights the progress achieved with halide-based materials in rechargeable batteries, including the use of halide electrodes, bulk and/or surface halogen-doping of electrodes, electrolyte design, and additives that enable fast ion shuttling and stable electrode/electrolyte interfaces, as well as realization of new battery chemistry. Battery chemistry based on monovalent cation, multivalent cation, anion, and dual-ion transfer is covered. This Review aims to promote the understanding of halide-based materials to stimulate further research and development in the area of high-performance rechargeable batteries. It also offers a perspective on the exploration of new materials and systems for electrochemical energy storage.

摘要

可充电电池被认为是弥合可再生能源生产与消费之间差距的最有效储能技术之一。为满足不断增长的储能需求,需要进一步开发具有高能量密度、低成本、安全和长循环寿命等特性的可充电电池。本综述重点介绍了卤化物基材料在可充电电池方面取得的进展,包括卤化物电极的使用、电极的体相和/或表面卤素掺杂、电解质设计以及能够实现快速离子穿梭和稳定电极/电解质界面的添加剂,以及新电池化学的实现。涵盖了基于单价阳离子、多价阳离子、阴离子和双离子转移的电池化学。本综述旨在增进对卤化物基材料的理解,以推动高性能可充电电池领域的进一步研究与开发。它还为电化学储能新材料和新系统的探索提供了一个视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验