Luspay-Kuti Adrienn, Mandt Kathleen, Jessup Kandis-Lea, Kammer Joshua, Hue Vincent, Hamel Mark, Filwett Rachael
Space Science and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238, USA.
Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Blvd., San Antonio, TX 78249, USA.
Mon Not R Astron Soc. 2017 Nov;472(1):104-117. doi: 10.1093/mnras/stx1362. Epub 2017 Jul 28.
In light of the recent flyby measurements, we present a coupled ion-neutral-photochemistry model developed for simulating the atmosphere of Pluto. Our model results closely match the observed density profiles of CH, N and the C hydrocarbons in the altitude range where available measurements are most accurate (above ~ 100-200 km). We found a high eddy coefficient of 10 cm s from the surface to an altitude of 150 km, and 3 × 10 cm s above 150 km for Pluto's atmosphere. Our results demonstrate that C hydrocarbons must stick to and be removed by aerosol particles in order to reproduce the C2 profiles observed by Incorporation into aerosols in Pluto's atmosphere is a significantly more effective process than condensation, and we found that condensation alone cannot account for the observed shape of the vertical profiles. We empirically determined the sticking efficiency of C2 hydrocarbons to aerosol particles as a function of altitude, and found that the sticking efficiency of C hydrocarbons is inversely related to the aerosol surface area. Aerosols must harden and become less sticky as they age in Pluto's atmosphere. Such hardening with ageing is both necessary and sufficient to explain the vertical profiles of C hydrocarbons in Pluto's atmosphere. This result is in agreement with the fundamental idea of aerosols hardening as they age, as proposed for Titan's aerosols.
鉴于最近的飞越测量结果,我们提出了一个用于模拟冥王星大气的耦合离子-中性-光化学模型。我们的模型结果与在可用测量最为精确的高度范围内(约100 - 200千米以上)观测到的CH、N和碳氢化合物的密度剖面紧密匹配。我们发现冥王星大气从表面到150千米高度处的涡动系数为10厘米²/秒,在150千米以上为3×10厘米²/秒。我们的结果表明,碳氢化合物必须附着在气溶胶颗粒上并被其清除,以便重现由[具体观测设备]观测到的C₂剖面。在冥王星大气中,并入气溶胶是一个比凝结显著更有效的过程,并且我们发现仅靠凝结无法解释观测到的垂直剖面形状。我们凭经验确定了碳氢化合物附着到气溶胶颗粒上的效率随高度的变化情况,发现碳氢化合物的附着效率与气溶胶表面积成反比。在冥王星大气中,气溶胶随着时间推移必须变硬且粘性降低。这种随着时间变硬对于解释冥王星大气中碳氢化合物的垂直剖面既是必要的也是充分的。这一结果与针对土卫六气溶胶所提出的气溶胶随着时间变硬的基本观点一致。