Suppr超能文献

海王星大气中的碳氢化合物成核与气溶胶形成。

Hydrocarbon nucleation and aerosol formation in Neptune's atmosphere.

作者信息

Moses J I, Allen M, Yung Y L

机构信息

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 91125, USA.

出版信息

Icarus. 1992 Oct;99(2):318-46. doi: 10.1016/0019-1035(92)90149-2.

Abstract

Photodissociation of methane at high altitude levels in Neptune's atmosphere leads to the production of complex hydrocarbon species such as acetylene (C2H2), ethane (C2H6), methylacetylene (CH3C2H), propane (C3H8), diacetylene (C4H2), and butane (C4H8). These gases diffuse to the lower stratosphere where temperatures are low enough to initiate condensation. Particle formation may not occur readily, however, as the vapor species become supersaturated. We present a theoretical analysis of particle formation mechanisms at conditions relevant to Neptune's troposphere and stratosphere and show that hydrocarbon nucleation is very inefficient under Neptunian conditions: saturation ratios much greater than unity are required for aerosol formation by either homogeneous, heterogeneous, or ion-induced nucleation. Homogeneous nucleation will not be important for any of the hydrocarbon species considered; however, both heterogeneous and ion-induced nucleation should be possible on Neptune for most of the above species. The relative effectiveness of heterogeneous and ion-induced nucleation depends on the physical and thermodynamic properties of the particular species, the abundance of the condensable species, the temperature at which the vapor becomes supersaturated, and the number and type of condensation nuclei or ions available. Typical saturation ratios required for observable particle formation rates on Neptune range from approximately 3 for heterogeneous nucleation of methane in the upper troposphere to greater than 1000 for heterogeneous nucleation of methylacetylene, diacetylene, and butane in the lower stratosphere. Thus, methane clouds may form slightly above, and stratospheric hazes far below, their saturation levels. When used in conjunction with the results of detailed models of atmospheric photochemistry, our nucleation models place realistic constraints on the altitude levels at which we expect hydrocarbon hazes or clouds to form on Neptune.

摘要

在海王星大气层的高空,甲烷的光解会产生复杂的碳氢化合物,如乙炔(C2H2)、乙烷(C2H6)、甲基乙炔(CH3C2H)、丙烷(C3H8)、丁二炔(C4H2)和丁烷(C4H8)。这些气体扩散到平流层下部,那里的温度足够低,足以引发凝结。然而,由于蒸汽物种变得过饱和,颗粒形成可能不会轻易发生。我们对与海王星对流层和平流层相关条件下的颗粒形成机制进行了理论分析,结果表明,在海王星条件下,碳氢化合物成核效率非常低:无论是均相成核、异相成核还是离子诱导成核,形成气溶胶都需要饱和度远大于1。对于所考虑的任何碳氢化合物物种,均相成核都不重要;然而,对于上述大多数物种,在海王星上异相成核和离子诱导成核都应该是可能的。异相成核和离子诱导成核的相对有效性取决于特定物种的物理和热力学性质、可凝结物种的丰度、蒸汽变得过饱和时的温度以及可用的凝结核或离子的数量和类型。在海王星上,形成可观测颗粒形成率所需的典型饱和度范围从对流层上部甲烷异相成核的约3到平流层下部甲基乙炔、丁二炔和丁烷异相成核的大于1000。因此,甲烷云可能在略高于其饱和度水平的位置形成,而平流层霾则在远低于其饱和度水平的位置形成。当与大气光化学详细模型的结果结合使用时,我们的成核模型对我们预期在海王星上形成碳氢化合物霾或云的高度水平施加了实际限制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验