Yanase Masafumi, Nakatsu Koki, Cardos Charlane Joy, Konda Yoshiki, Hayashi Gosuke, Okamoto Akimitsu
Department of Chemistry and Biotechnology , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan . Email:
Department of Biomolecular Engineering , Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan . Email:
Chem Sci. 2019 May 9;10(23):5967-5975. doi: 10.1039/c9sc00646j. eCollection 2019 Jun 21.
Native chemical ligation (NCL) between the C-terminal peptide thioester and the N-terminal cysteinyl-peptide revolutionized the field of chemical protein synthesis. The difficulty of direct synthesis of the peptide thioester in the Fmoc method has prompted the development of crypto-thioesters that can be efficiently converted into thioesters. Cysteinylprolyl ester (CPE), which is an - acyl shift-driven crypto-thioester that relies on an intramolecular - acyl shift to displace the amide-thioester equilibrium, enabled -thioesterification and subsequent NCL in one pot. However, the utility of CPE is limited because of the moderate thioesterification rates and the synthetic complexity introduced by the ester group. Herein, we develop a new crypto-thioester, cysteinylprolyl imide (CPI), which replaces the alcohol leaving group of CPE with other leaving groups such as benzimidazolidinone, oxazolidinone, and pyrrolidinone. CPI peptides were efficiently synthesized by using standard Fmoc solid-phase peptide synthesis (SPPS) and subsequent on-resin imide formation. Screening of the several imide structures indicated that methyloxazolidinone--leucine (MeOxd-Tle) showed faster conversion into thioester and higher stability against hydrolysis under NCL conditions. Finally, by using CPMeOxd-Tle peptides, we demonstrated the chemical synthesis of affibody N-to-C sequential, three-segment ligation and histone H2A.Z convergent four-segment ligation. This facile and straightforward method is expected to be broadly applicable to chemical protein synthesis.
C 端肽硫酯与 N 端半胱氨酰肽之间的天然化学连接(NCL)彻底改变了化学蛋白质合成领域。在 Fmoc 方法中直接合成肽硫酯的困难促使了可有效转化为硫酯的隐硫酯的发展。半胱氨酰脯氨酯(CPE)是一种由酰基转移驱动的隐硫酯,它依靠分子内酰基转移来取代酰胺 - 硫酯平衡,能够在一锅反应中实现硫酯化及随后的 NCL。然而,由于硫酯化速率适中以及酯基引入的合成复杂性,CPE 的实用性受到限制。在此,我们开发了一种新的隐硫酯,半胱氨酰脯氨酰亚胺(CPI),它用苯并咪唑啉酮、恶唑烷酮和吡咯烷酮等其他离去基团取代了 CPE 的醇离去基团。通过使用标准的 Fmoc 固相肽合成(SPPS)及随后的树脂上亚胺形成,高效合成了 CPI 肽。对几种亚胺结构的筛选表明,甲基恶唑烷酮 -L- 亮氨酸(MeOxd-Tle)在 NCL 条件下表现出更快的硫酯转化速度和更高的抗水解稳定性。最后,通过使用 CPMeOxd-Tle 肽,我们展示了亲和体的 N 到 C 顺序三段连接以及组蛋白 H2A.Z 的汇聚四段连接的化学合成。这种简便直接的方法有望广泛应用于化学蛋白质合成。