Tang Tommy, Deniz Engin, Khokha Mustafa K, Tagare Hemant D
Department of Radiology and Biomedical Imaging, Yale University, 300 Cedar St, New Haven, CT 06510, USA.
Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University, 333 Cedar Street, New Haven, CT 06510, USA.
Biomed Opt Express. 2019 Jun 7;10(7):3196-3216. doi: 10.1364/BOE.10.003196. eCollection 2019 Jul 1.
Particle tracking velocimetry (PTV) gives quantitative estimates of fluid flow velocities from images. But particle tracking is a complicated problem, and it often produces results that need substantial post-processing. We propose a novel Gaussian process regression-based post-processing step for PTV: The method smooths ("denoises") and densely interpolates velocity estimates while rejecting track irregularities. The method works under a large range of particle densities and fluid velocities. In addition, the method calculates standard deviances (error bars) for the velocity estimates, opening the possibility of propagating the standard deviances through subsequent processing and analysis. The accuracy of the method is experimentally evaluated using Optical Coherence Tomography images of particles in laminar flow in a pipe phantom. Following this, the method is used to quantify cilia-driven fluid flow and vorticity patterns in a developing embryo.
粒子跟踪测速法(PTV)通过图像对流体流速进行定量估计。但粒子跟踪是一个复杂的问题,其产生的结果往往需要大量的后处理。我们为PTV提出了一种基于高斯过程回归的新型后处理步骤:该方法在剔除轨迹不规则性的同时,对速度估计进行平滑(“去噪”)和密集插值。该方法在大范围的粒子密度和流体速度条件下均有效。此外,该方法还能计算速度估计的标准差(误差线),为在后续处理和分析中传播标准差提供了可能。通过使用管道模型中层流中粒子的光学相干断层扫描图像,对该方法的准确性进行了实验评估。在此之后,该方法被用于量化发育中胚胎内纤毛驱动的流体流动和涡度模式。