University of Messina, ERIC aisbl and CASPE/INSTM, Departments ChiBioFarAm and MIFT, viale F. Stagno d'Alcontres 31, 98166, Messina, Italy.
Institute of Chemistry-Araraquara, Universidade Estadual Paulista (UNESP), Rua Francisco Degni, 55, Bairro Quitandinha, 14800-900, Araraquara, SP, Brazil.
ChemSusChem. 2019 Sep 20;12(18):4274-4284. doi: 10.1002/cssc.201901352. Epub 2019 Aug 22.
Cu O/gas diffusion layer (GDL) electrodes prepared by electrodeposition were studied for the electrocatalytic reduction of CO . The designed electrode was also tested in solar-light-induced CO conversion in combination with a CuO/NtTiO photoanode using a compact photoelectrocatalytic (PEC) cell. Both PEC cell electrodes were prepared using non-critical raw materials and low cost, easily scalable procedures. In the PEC experiments, a total carbon faradaic selectivity of about 90 % to formate and about 75 % to acetate was obtained after 24 h of operations without application of potential/current or using sacrificial agents. In electrocatalytic tests of CO reduction at -1.5 V, the same electrode yielded high total faradaic selectivity (>95 %) but formed selectively formate (about 80 % selectivity) rather than acetate. The in situ transformation of the Cu O/GDL electrode leads to the formation of a hybrid Cu O-Cu/GDL system. Cyclic voltammetry data indicate that the potential and the presence of CO (not only of HCO species) are both important elements in this transformation. Data also indicate that the surface concentration of CO (or of its products of transformation) on the electrode is an important factor to determine performance in the conversion of CO .
用电沉积法制备的 CuO/气体扩散层 (GDL) 电极被用于研究 CO 的电催化还原。所设计的电极还与 CuO/NtTiO 光阳极一起在太阳光照诱导的 CO 转化中进行了测试,使用紧凑的光电催化 (PEC) 电池。PEC 电池的两个电极均使用非关键原材料和低成本、易于扩展的程序制备。在 PEC 实验中,在没有施加电势/电流或使用牺牲剂的情况下运行 24 小时后,可获得约 90%的总碳法拉第选择性以形成甲酸盐,约 75%的选择性以形成乙酸盐。在-1.5V 下进行 CO 还原的电催化测试中,相同的电极表现出高的总法拉第选择性 (>95%),但选择性地形成甲酸盐(约 80%的选择性),而不是乙酸盐。CuO/GDL 电极的原位转化导致形成了一种混合的 CuO-Cu/GDL 系统。循环伏安法数据表明,电势和 CO 的存在(不仅是 HCO3-物种)都是这种转化的重要因素。数据还表明,电极上 CO(或其转化产物)的表面浓度是决定 CO 转化性能的一个重要因素。