Suppr超能文献

蓝细菌与绿色叶绿体之间的进化关系。

Evolutionary relationships among cyanobacteria and green chloroplasts.

作者信息

Giovannoni S J, Turner S, Olsen G J, Barns S, Lane D J, Pace N R

机构信息

Department of Biology, Indiana University, Bloomington 47405.

出版信息

J Bacteriol. 1988 Aug;170(8):3584-92. doi: 10.1128/jb.170.8.3584-3592.1988.

Abstract

The 16S rRNAs from 29 cyanobacteria and the cyanelle of the phytoflagellate Cyanophora paradoxa were partially sequenced by a dideoxynucleotide-terminated, primer extension method. A least-squares distance matrix analysis was used to infer phylogenetic trees that include green chloroplasts (those of euglenoids, green algae, and higher plants). The results indicate that many diverse forms of cyanobacteria diverged within a short span of evolutionary distance. Evolutionary depth within the surveyed cyanobacteria is substantially less than that separating the major eubacterial taxa, as though cyanobacterial diversification occurred significantly after the appearance of the major eubacterial groups. Three of the five taxonomic sections defined by Rippka et al. (R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and R. Y. Stanier, J. Gen. Microbiol. 111:1-61, 1979) (sections II [pleurocapsalean], IV [heterocystous, filamentous, nonbranching], and V [heterocystous, filamentous, branching]) are phylogenetically coherent. However, the other two sections (I [unicellular] and III [nonheterocystous, filamentous]) are intermixed and hence are not natural groupings. Our results not only support the conclusion of previous workers that the cyanobacteria and green chloroplasts form a coherent phylogenetic group but also suggest that the chloroplast lineage, which includes the cyanelle of C. paradoxa, is not just a sister group to the free-living forms but rather is contained within the cyanobacterial radiation.

摘要

采用双脱氧核苷酸终止的引物延伸法,对29种蓝细菌以及植物鞭毛虫蓝氏拟甲藻的蓝小体的16S rRNA进行了部分测序。利用最小二乘距离矩阵分析来推断系统发育树,其中包括绿色叶绿体(裸藻、绿藻和高等植物的叶绿体)。结果表明,许多不同形式的蓝细菌在较短的进化距离内发生了分化。在所调查的蓝细菌中,进化深度明显小于区分主要真细菌类群的进化深度,仿佛蓝细菌的多样化是在主要真细菌类群出现之后才显著发生的。Rippka等人(R. Rippka、J. Deruelles、J. B. Waterbury、M. Herdman和R. Y. Stanier,《普通微生物学杂志》111:1 - 61,1979年)定义的五个分类部分中的三个(第二部分[侧生藻属]、第四部分[有异形胞丝状不分枝]和第五部分[有异形胞丝状分枝])在系统发育上是连贯的。然而,另外两个部分(第一部分[单细胞]和第三部分[无异形胞丝状])相互混杂,因此不是自然的分类群。我们的结果不仅支持了先前研究者得出的蓝细菌和绿色叶绿体形成一个连贯的系统发育群的结论,还表明包括蓝氏拟甲藻蓝小体在内的叶绿体谱系,不仅仅是自由生活形式的姐妹群,而是包含在蓝细菌的辐射范围内。

相似文献

1
Evolutionary relationships among cyanobacteria and green chloroplasts.
J Bacteriol. 1988 Aug;170(8):3584-92. doi: 10.1128/jb.170.8.3584-3592.1988.
2
Dating the cyanobacterial ancestor of the chloroplast.
ISME J. 2010 Jun;4(6):777-83. doi: 10.1038/ismej.2010.2. Epub 2010 Mar 4.
3
Phylogeny of cyanobacterial nifH genes: evolutionary implications and potential applications to natural assemblages.
Microbiology (Reading). 1997 Apr;143 ( Pt 4):1443-1450. doi: 10.1099/00221287-143-4-1443.
4
Polyphyly of true branching cyanobacteria (Stigonematales).
Int J Syst Evol Microbiol. 2004 Mar;54(Pt 2):349-357. doi: 10.1099/ijs.0.02744-0.
5
Ribosomal RNA homologies and the evolution of the filamentous blue-green bacteria.
J Mol Evol. 1978 Feb 21;10(4):283-91. doi: 10.1007/BF01734218.
6
Gene phylogenies and the endosymbiotic origin of plastids.
Biosystems. 1992;28(1-3):75-90. doi: 10.1016/0303-2647(92)90010-v.
7
Cyanobacterial evolution: results of 16S ribosomal ribonucleic acid sequence analyses.
Can J Biochem. 1979 Jun;57(6):879-88. doi: 10.1139/o79-108.
8
The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts.
Nature. 1989 Jan 26;337(6205):380-2. doi: 10.1038/337380a0.
9
Does the Cyanophora paradoxa genome revise our view on the evolution of photorespiratory enzymes?
Plant Biol (Stuttg). 2013 Jul;15(4):759-68. doi: 10.1111/plb.12003. Epub 2013 Apr 2.
10
The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives.
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5442-7. doi: 10.1073/pnas.0600999103. Epub 2006 Mar 28.

引用本文的文献

2
Phylogenetic and spectroscopic insights on the evolution of core antenna proteins in cyanobacteria.
Photosynth Res. 2024 Dec;162(2-3):197-210. doi: 10.1007/s11120-023-01046-6. Epub 2023 Sep 22.
5
Genome-enabled exploration of microbial ecology and evolution in the sea: a rising tide lifts all boats.
Environ Microbiol. 2021 Mar;23(3):1301-1321. doi: 10.1111/1462-2920.15403. Epub 2021 Feb 2.
6
Role of diversity-generating retroelements for regulatory pathway tuning in cyanobacteria.
BMC Genomics. 2020 Sep 25;21(1):664. doi: 10.1186/s12864-020-07052-5.
7
Influence of host genetics in shaping the rumen bacterial community in beef cattle.
Sci Rep. 2020 Sep 15;10(1):15101. doi: 10.1038/s41598-020-72011-9.

本文引用的文献

1
ULTRASTRUCTURAL STUDIES ON THE BLUE-GREEN ALGAL SYMBIONT IN CYANOPHORA PARADOXA KORSCHIKOFF.
J Cell Biol. 1963 Dec;19(3):551-63. doi: 10.1083/jcb.19.3.551.
2
The green non-sulfur bacteria: a deep branching in the eubacterial line of descent.
Syst Appl Microbiol. 1987;9:47-53. doi: 10.1016/s0723-2020(87)80055-3.
4
The complete nucleotide sequence of 16S ribosomal RNA gene from tobacco chloroplasts.
Gene. 1982 Feb;17(2):213-8. doi: 10.1016/0378-1119(82)90074-9.
5
Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli.
J Mol Biol. 1981 May 15;148(2):107-27. doi: 10.1016/0022-2836(81)90508-8.
7
Sequence of the chloroplast 16S rRNA gene and its surrounding regions of Chlamydomonas reinhardii.
Nucleic Acids Res. 1982 Dec 11;10(23):7609-20. doi: 10.1093/nar/10.23.7609.
9
On the stochastic model for estimation of mutational distance between homologous proteins.
J Mol Evol. 1972 Dec 29;2(1):87-90. doi: 10.1007/BF01653945.
10
A common origin of rickettsiae and certain plant pathogens.
Science. 1985 Nov 1;230(4725):556-8. doi: 10.1126/science.3931222.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验