Suppr超能文献

嵌入锡纳米颗粒的分级硫掺杂石墨烯泡沫用于在基于双(氟磺酰)亚胺锂的电解质中实现优异的锂存储性能

Hierarchical Sulfur-Doped Graphene Foam Embedded with Sn Nanoparticles for Superior Lithium Storage in LiFSI-Based Electrolyte.

作者信息

Wang Jian, Yang Jin, Xiao Qingbo, Jia Lujie, Lin Hongzhen, Zhang Yuegang

机构信息

School of Nano Technology and Nano Bionics , University of Science and Technology of China , Hefei , Anhui 230026 , China.

i-Lab , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou , Jiangsu 215123 , China.

出版信息

ACS Appl Mater Interfaces. 2019 Aug 21;11(33):30500-30507. doi: 10.1021/acsami.9b10613. Epub 2019 Aug 12.

Abstract

Lithium-ion batteries based on tin (Sn) anode have the advantage of high energy density at a reasonable cost. However, their commercialization suffers from rapid capacity fading caused by active material aggregation, huge volumetric change, and continuous formation/deformation of solid-electrolyte interphase (SEI). Herein, we report an anode made of nanosized metallic Sn particles embedded in a hierarchically porous sulfur-doped graphene foam (Sn@3DSG). In this design, the sulfur-doped graphene foam provides abundant active defect sites to facilitate the rapid lithium-ion diffusion from outside to inside the Sn nanoparticles. Meanwhile, the hierarchical pores resulting from the self-assembly of graphene and evaporation of nanosized metallic Zn provide sufficient space to hold the volumetric changes of Sn. Owing to these merits, the as-prepared Sn electrode exhibits an excellent lithiated capacity (1272 mA h g at 200 mA g) and high-rate performance (345 mA h g at 2000 mA g) in the LiFSI-based electrolyte. It is also discovered that a LiF-LiN-rich SEI layer is formed on the surface of the Sn electrode in a LiFSI-based electrolyte, which is beneficial for enhancing the electrode's cycling stability. Our work shows great promise of composite Sn anodes for future high-energy-density lithium-ion batteries.

摘要

基于锡(Sn)阳极的锂离子电池具有以合理成本实现高能量密度的优势。然而,它们的商业化受到活性材料聚集、巨大的体积变化以及固体电解质界面(SEI)的持续形成/变形所导致的快速容量衰减的影响。在此,我们报道了一种由嵌入分级多孔硫掺杂石墨烯泡沫(Sn@3DSG)中的纳米级金属Sn颗粒制成的阳极。在这种设计中,硫掺杂石墨烯泡沫提供了丰富的活性缺陷位点,以促进锂离子从外部快速扩散到Sn纳米颗粒内部。同时,由石墨烯自组装和纳米级金属Zn蒸发产生的分级孔隙提供了足够的空间来容纳Sn的体积变化。由于这些优点,所制备的Sn电极在基于LiFSI的电解质中表现出优异的锂化容量(在200 mA g时为1272 mA h g)和高倍率性能(在2000 mA g时为345 mA h g)。还发现,在基于LiFSI的电解质中,Sn电极表面形成了富含LiF-LiN的SEI层,这有利于提高电极的循环稳定性。我们的工作表明复合Sn阳极在未来高能量密度锂离子电池方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验