Suppr超能文献

用于高容量可逆锂存储的自牺牲合成SnO@Sn核壳异质结构阳极的界面调控

Interfacial Modulation of a Self-Sacrificial Synthesized SnO@Sn Core-Shell Heterostructure Anode toward High-Capacity Reversible Li Storage.

作者信息

Deng Bo, He Rong, Zhang Jing, You Caiyin, Xi Yonglan, Xiao Qingbo, Zhang Yongzheng, Liu Haitao, Liu Meinan, Ye Fangmin, Lin Hongzhen, Wang Jian

机构信息

Advanced Material Analysis and Test Center, Xi'an University of Technology, Xi'an, Shaanxi 710048, China.

School of Materials Science and Engineering, Xi'an University of Technology, Xi'an Shaanxi 710048, China.

出版信息

Inorg Chem. 2023 Sep 25;62(38):15736-15746. doi: 10.1021/acs.inorgchem.3c02631. Epub 2023 Sep 11.

Abstract

Sn-based anodes are promising high-capacity anode materials for low-cost lithium ion batteries. Unfortunately, their development is generally restricted by rapid capacity fading resulting from large volume expansion and the corresponding structural failure of the solid electrolyte interphase (SEI) during the lithiation/delithiation process. Herein, heterostructural core-shell SnO-layer-wrapped Sn nanoparticles embedded in a porous conductive nitrogen-doped carbon (SOWSH@PCNC) are proposed. In this design, the self-sacrificial Zn template from the precursors is used as the pore former, and the LiF-LiN-rich SEI modulation layer is motivated to average uniform Li flux against local excessive lithiation. Meanwhile, both the chemically active nitrogen sites and the heterojunction interfaces within SnO@Sn are implanted as electronic/ionic promoters to facilitate fast reaction kinetics. Consequently, the as-converted SOWSH@PCNC electrodes demonstrate a significantly boosted Li capacity of 961 mA h g at 200 mA g and excellent cycling stability with a low capacity decaying rate of 0.071% after 400 cycles at 500 mA g, suggesting their great promise as an anode material in high-performance lithium ion batteries.

摘要

锡基负极是低成本锂离子电池中很有前景的高容量负极材料。不幸的是,它们的发展通常受到锂化/脱锂过程中由于体积大幅膨胀以及相应的固体电解质界面(SEI)结构失效导致的快速容量衰减的限制。在此,提出了一种异质结构的核壳结构,即嵌入多孔导电氮掺杂碳中的SnO层包裹的Sn纳米颗粒(SOWSH@PCNC)。在这种设计中,前驱体中的自牺牲锌模板用作造孔剂,富含LiF-LiN的SEI调制层被激发以平均均匀的锂通量来对抗局部过度锂化。同时,SnO@Sn中的化学活性氮位点和异质结界面都作为电子/离子促进剂植入,以促进快速反应动力学。因此,转化后的SOWSH@PCNC电极在200 mA g下表现出显著提高的961 mA h g的锂容量,并且在500 mA g下循环400次后具有优异的循环稳定性,容量衰减率低至0.071%,这表明它们作为高性能锂离子电池负极材料具有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验